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Outline
• Introduction
• Machine learning
• Loss function
• Formal neuron
• Single layer perceptron
• Multilayer perceptron
• Reminders about differential calculus
• Back-propagation
• Learning rate
• Mini-batches
• Convolutional layers
• Pooling, softmax …
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ImageNet Classification 2012 Results
Krizhevsky et al. – 16.4% error (top-5)
Next best (Pyr. FV on dense SIFT) – 26.2% error
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ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC)

• 1000 visual “fine grain” categories / labels (exclusive)
• 150,000 test images (hidden “ground truth”)
• 50,000 validation images
• 1,200,000 training images
• Each training, validation or test image falls within exactly one 

of the 1000 categories
• Task: for each image in the test set, rank the categories 

from most probable to least probable
• Metric: top-5 error rate: percentage of images for which the 

actual category is not in the five first ranked categories
• Held from 2010 to 2015, frozen since 2012
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ImageNet Classification 2013 Results
http://www.image-net.org/challenges/LSVRC/2013/results.php
Demo: http://www.clarifai.com/

http://www.image-net.org/challenges/LSVRC/2013/results.php
http://www.clarifai.com/
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For comparison, human performance is 5.1% (Russakovsky et al.)

Going deeper and deeper
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Deep Convolutional Neural Networks

• Decades of algorithmic improvements in neural networks 
(Stochastic Gradient Descent, initialization, momentum …)

• Very large amounts of properly annotated data (ImageNet)
• Huge computing power (Teraflops × weeks): GPU!
• Convolutional networks
• Deep networks (>> 3 layers)
• ReLU (Rectified Linear Unit) activation functions
• Batch normalization
• Drop Out
• …
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Deep Learning is (now) EASY

• Maths: linear algebra and differential calculus (training only)
– 𝑌𝑌 = 𝐴𝐴.𝑋𝑋 + 𝐵𝐵 (with tensor extension)
– 𝑓𝑓 𝑥𝑥 + ℎ = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓′ 𝑥𝑥 . ℎ + 𝑜𝑜 ℎ (with multidimensional variables)
– 𝑔𝑔 𝑜𝑜 𝑓𝑓 ′ 𝑥𝑥 = 𝑔𝑔′𝑜𝑜 𝑓𝑓 𝑥𝑥 . 𝑓𝑓′ 𝑥𝑥 (recursively applied)

• Tools: amazingly integrated, effective and easy to use packages
– Mostly python interface
– Autograd packages: only need to care of the linear algebra part

• Get started with:
– 3-hour course
– 1-hour PyTorch tutorial (familiarity with python assumed)
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Supervised learning
• A machine learning technique for creating a function from training 

data.
• The training data consist of pairs of input objects (typically vectors) 

and desired outputs.
• The output of the function can be a continuous value (regression) 

or a class label (classification) of the input object.
• The task of the supervised learner is to predict the value of the 

function for any valid input object after having seen a number of 
training examples (i.e. pairs of input and target output).

• To achieve this, the learner has to generalize from the presented 
data to unseen situations in a “reasonable” way.

• The parallel task in human and animal psychology is often referred 
to as concept learning (in the case of classification).

• Most commonly, supervised learning generates a global model
that helps mapping input objects to desired outputs.

(http://en.wikipedia.org/wiki/Supervised_learning)
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• Target function:  f : X → Y
x → y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible image tags:

Learning a target function

𝑓𝑓 = “cat” 

𝑓𝑓 = “dog” 

𝑓𝑓 = “car” 

𝑋𝑋 = �
(𝑤𝑤,ℎ)∈ℕ∗2

[0,1]𝑤𝑤×ℎ×3

𝑌𝑌 = “cat”, “dog” …
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• Target function:  f : X → Y
x → y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible tag scores:

Learning a target function

𝑓𝑓 =
𝑋𝑋 = �

(𝑤𝑤,ℎ)∈ℕ∗2
[0,1]𝑤𝑤×ℎ×3

𝑌𝑌 = ℝ “cat”,“dog” … = ℝ𝑐𝑐

0.90
0.04
0.01

…

𝑓𝑓 =

𝑓𝑓 =

0.07
0.88
0.02

…

0.02
0.03
0.86

…

← “cat”
← “dog”
← “car”
← …
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• Target function:  f : X → Y
x → y = f(x)

– x : input object, e.g., image descriptor
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible image descriptors:

(or subset of it)

Set of possible tag scores:

𝐷𝐷 is a predefined and fixed function

from                                    to ℝ𝑑𝑑

Learning a target function

𝑓𝑓 𝐷𝐷 = 𝑋𝑋 = ℝ𝑑𝑑

𝑌𝑌 = ℝ𝑐𝑐

0.90
0.04
0.01
…

0.07
0.88
0.02
…

0.02
0.03
0.86
…

𝑓𝑓 𝐷𝐷 =

𝑓𝑓 𝐷𝐷 = �
(𝑤𝑤,ℎ)∈ℕ∗2

[0,1]𝑤𝑤×ℎ×3
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Learning from training data

• Training data:  S = (xi, yi)(1 ≤ i ≤ I)
– I : number of training samples

• Learning algorithm:  L : (X×Y)* → YX

S         → f = L(S)

( (X×Y)* = ∪n∈ℕ (X×Y)n )
YX : set of all applications (maps) from X to Y

• Regression or classification system:  
y = f(x) = [L(S)](x) = g(S, x)
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Supervised learning
• Target function:  f : X → Y

x → y = f(x)
– x : input object (typically vector)
– y : desired output (continuous value or class label)
– X : set of valid input objects
– Y : set of possible output values

• Training data:  S = (xi,yi)(1 ≤ i ≤ I)
– I : number of training samples

• Learning algorithm:  L : (X×Y)* → YX

S         → f = L(S)

• Regression or classification system:  
y = f(x) = [L(S)](x) = g(S, x)
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Two types of functions

• Target function:  f : X → Y
x → y = f(x)

– maps input objects to desired outputs
– often determined by a set of parameters
– the function or its parameter are learnt from a training set

• Learning algorithm:  L : (X×Y)* → YX

S       → f = L(S)
– maps training sets to target functions
– often controlled by a set of hyper-parameters
– hyper-parameters may be tuned on a validation set
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Parametric supervised learning
• Parameterized function: 𝑓𝑓: ℝ𝑚𝑚 → YX 

𝜃𝜃 → 𝑓𝑓𝜃𝜃

• 𝑓𝑓 is a “meta” function or a family of function

• Target function:  𝑓𝑓𝜃𝜃 : X → Y
x → y = 𝑓𝑓𝜃𝜃 (x)

– X : set of valid input objects (ℝ𝑑𝑑)
– Y : set of possible output values (ℝ𝑐𝑐)

• Training data:  S = (xi,yi)(1 ≤ i ≤ I)
– I : number of training samples

• Learning algorithm:  𝐿𝐿𝑓𝑓 : (X×Y)* → ℝ𝑚𝑚 (learns 𝜃𝜃 from S) 
S       → 𝜃𝜃 = 𝐿𝐿𝑓𝑓 (S)

• Regression or classification system: 𝑦𝑦 = 𝑓𝑓𝜃𝜃 𝑥𝑥 = 𝑓𝑓 𝜃𝜃, 𝑥𝑥
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Single-label loss function
• Quantifies the cost of classification error or the     

“empirical risk”

• Example (Mean Square Error): 𝐸𝐸𝑆𝑆 𝑓𝑓 = ∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 (𝑓𝑓 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

• If 𝑓𝑓 depends on a parameter vector θ (L learns θ):                     
𝐸𝐸𝑆𝑆 θ = 1

2
∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 (𝑓𝑓 θ, 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

• For a linear SVM with soft margin, θ = 𝑤𝑤, 𝑏𝑏 :                            
𝐸𝐸𝑆𝑆 θ = 1

2
𝑤𝑤 2 + 𝐶𝐶.∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 max(0,1 − 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 )

• The learning algorithm aims at minimizing the      
empirical risk: θ∗ = argmin

θ
𝐸𝐸𝑆𝑆 θ
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Multi-label loss function

• Predict 𝑃𝑃 labels for each data sample 𝑥𝑥

• 𝑃𝑃 decision functions : f = (fp)(1 ≤ p ≤ P)

• Example with 𝑓𝑓 depending on a parameter vector:       

𝐸𝐸𝑆𝑆 θ = 1
2
∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 ∑𝑝𝑝=1

𝑝𝑝=𝑃𝑃(𝑓𝑓𝑝𝑝 θ, 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑝𝑝)2 = 1
2
∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 (𝑓𝑓 θ, 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

(same as single label case with Euclidean distance 
between vectors of predictions and vectors of labels)

• θ∗ = argmin
θ

𝐸𝐸𝑆𝑆 θ

• The fp functions may take any real value
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Formal neural or unit (two sub-units)

𝑦𝑦 = �
𝑗𝑗

𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 = 𝑤𝑤. 𝑥𝑥

z

x1
x2
x3
x4
x5

𝑧𝑧 = 𝜎𝜎 𝑦𝑦 + 𝑏𝑏 =
1

1 + 𝑒𝑒𝑦𝑦+𝑏𝑏

linear combination sigmoid function

w,b

𝑥𝑥 : column vector
𝑤𝑤 : row vector

𝑦𝑦, 𝑏𝑏, 𝑧𝑧 : scalars

linear and vector part non-linear and scalar part
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Formal neural or unit (two sub-units)

𝑦𝑦 = �
𝑗𝑗

𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 = 𝑤𝑤. 𝑥𝑥

y

x1
x2
x3
x4
x5

𝑧𝑧 = 𝜎𝜎 𝑦𝑦 + 𝑏𝑏 =
1

1 + 𝑒𝑒𝑦𝑦+𝑏𝑏

linear combination sigmoid function

w

Globally equivalent to a linear SVM followed by a 
Platt normalization or to a logistic regression

linear and vector part non-linear and scalar part

zy b
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Neural layer (all to all, two sub-layers)

𝑦𝑦𝑖𝑖 = �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗 𝑧𝑧𝑖𝑖 = σ 𝑦𝑦𝑖𝑖 + 𝑏𝑏𝑖𝑖 =
1

1 + 𝑒𝑒𝑦𝑦𝑖𝑖+𝑏𝑏𝑖𝑖

matrix-vector multiplication per component operation
𝑌𝑌 = 𝑊𝑊.𝑋𝑋 𝑧𝑧 = σ 𝑌𝑌 + 𝐵𝐵

z1

x1

x2

x3

x4

x5

z2

z3

w1,b1

w2,b2

w3,b3

W,B
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Multilayer perceptron (all to all)

o1i1

i2

input 
layer

output 
layer

i3

i4

o2

o3

o4

hidden 
layer

I=X0 X3=OX1 X2
W1,B1 W2,B2 W3,B3
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Multilayer perceptron (all to all)

𝑌𝑌1 = 𝑊𝑊1.𝑋𝑋0 = 𝐹𝐹1 𝑊𝑊1,𝑋𝑋0

o1i1

i2

i3

i4

o2

o3

o4

I=X0 X3=OX1 X2
W1,B1 W2,B2 W3,B3

𝑋𝑋1 =σ 𝑌𝑌1 + 𝐵𝐵1 = 𝐺𝐺1 𝐵𝐵1,𝑌𝑌1
𝑌𝑌2 = 𝑊𝑊2.𝑋𝑋1 = 𝐹𝐹2 𝑊𝑊2,𝑋𝑋1 𝑋𝑋2 =σ 𝑌𝑌2 + 𝐵𝐵2 = 𝐺𝐺2 𝐵𝐵2,𝑌𝑌2
𝑌𝑌3 = 𝑊𝑊3.𝑋𝑋3 = 𝐹𝐹3 𝑊𝑊3,𝑋𝑋2 𝑋𝑋3 =σ 𝑌𝑌3 + 𝐵𝐵3 = 𝐺𝐺3 𝐵𝐵3,𝑌𝑌3

𝑂𝑂 = 𝑋𝑋3 = 𝐺𝐺3 𝐵𝐵3,𝐹𝐹3 𝑊𝑊3,𝐺𝐺2 𝐵𝐵2,𝐹𝐹2 𝑊𝑊2,𝐺𝐺1 𝐵𝐵1,𝐹𝐹1 𝑊𝑊1,𝑋𝑋0 = 𝐼𝐼

𝑂𝑂 = 𝐺𝐺3 𝐵𝐵3 𝑜𝑜 𝐹𝐹3 𝑊𝑊3 𝑜𝑜 𝐺𝐺2 𝐵𝐵2 𝑜𝑜 𝐹𝐹2 𝑊𝑊2 𝑜𝑜 𝐺𝐺1 𝐵𝐵1 𝑜𝑜 𝐹𝐹1 𝑊𝑊1 (𝐼𝐼)

Denoting 𝐹𝐹 𝑊𝑊 so that 𝐹𝐹 𝑊𝑊,𝑋𝑋 = (𝐹𝐹 𝑊𝑊 ) 𝑋𝑋 :
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Composition of simple functions

𝑋𝑋1 = 𝑊𝑊1.𝑋𝑋0 = 𝐹𝐹1 𝑊𝑊1,𝑋𝑋0 𝑋𝑋2 =σ 𝑋𝑋1 + 𝑊𝑊2 = 𝐹𝐹2 𝑊𝑊2,𝑋𝑋1
𝑋𝑋3 = 𝑊𝑊3.𝑋𝑋2 = 𝐹𝐹3 𝑊𝑊3,𝑋𝑋2 𝑋𝑋4 =σ 𝑋𝑋3 + 𝑊𝑊4 = 𝐹𝐹4 𝑊𝑊4,𝑋𝑋3
𝑋𝑋5 = 𝑊𝑊5.𝑋𝑋4 = 𝐹𝐹5 𝑊𝑊5,𝑋𝑋4 𝑋𝑋6 =σ 𝑋𝑋5 + 𝑊𝑊6 = 𝐹𝐹6 𝑊𝑊6,𝑋𝑋5

𝑂𝑂 = 𝐹𝐹6 𝑊𝑊6 𝑜𝑜 𝐹𝐹5 𝑊𝑊5 𝑜𝑜 𝐹𝐹4 𝑊𝑊4 𝑜𝑜 𝐹𝐹3 𝑊𝑊3 𝑜𝑜 𝐹𝐹2 𝑊𝑊2 𝑜𝑜 𝐹𝐹1 𝑊𝑊1 𝐼𝐼 = 𝑜𝑜𝑛𝑛=1𝑛𝑛=6 𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛 𝐼𝐼

X1 X4

W3

i1

i2

i3

i4

I=X0

W1 W2 W4

o1

o2

o3

o4

X6=O
W6W5

X2 X3 X5

linear non-linear linear non-linear linear non-linear

Splitting units and layers, renaming and renumbering:
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Composition of simple functions
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Composition of simple functions
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Feed Forward Network
• Global network definition:𝑂𝑂 = 𝐹𝐹 𝑊𝑊, 𝐼𝐼

(𝐼𝐼 ≡ 𝑥𝑥 𝑂𝑂 ≡ 𝑦𝑦 𝐹𝐹 ≡ 𝑓𝑓 𝑊𝑊 ≡ θ relative to previous notations)

• Layer values: 𝑋𝑋0,𝑋𝑋1 … 𝑋𝑋𝑁𝑁
with 𝑋𝑋0 = 𝐼𝐼 and 𝑋𝑋𝑁𝑁 = 𝑂𝑂 (𝑋𝑋𝑛𝑛 are vectors)

• Global vector of all unit parameters:
𝑊𝑊 = 𝑊𝑊1,𝑊𝑊2 … 𝑊𝑊𝑁𝑁
(weights by layer are concatenated, 𝑊𝑊𝑛𝑛 can matrices or 
vectors or any parameter structure, and even possibly 
empty)

• Feed forward: 𝑋𝑋𝑛𝑛+1 = 𝐹𝐹𝑛𝑛+1 𝑊𝑊𝑛𝑛+1,𝑋𝑋𝑛𝑛

• Possibly “joins” and “forks” (but no cycles)
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Classical Image classification

Plus: multiple features, early or late fusion, re-scoring …

Engineered
Feature 
Extraction

Classical 
Machine
Learning

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Support Vector Machines
Multilayer Perceptrons
Random Forests
…

Descriptors
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Classical Image classification

Still classical since 3-layer MLPs are at least 30 years old

Engineered
Feature 
Extraction

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Typically 3 layers
Not really better
than SVMs or
Random Forests

Descriptors

Multilayer 
Perceptron
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Deep “end-to-end” Image classification

• Fuzzy boundary between feature extraction and classification even if 
there is a transition between convolutional and fully connected layers

• End-to-end learning: features (descriptors) themselves are learned 
(by gradient descent) too, not engineered

• Possible only via the use of convolutional layers

ScoresImage

Learned Features Classification

Descriptors of increasing semantic level (𝑋𝑋𝑛𝑛)

Convolutional
And Pooling

Layers

Fully 
Connected 

Layers(𝑋𝑋0) (𝑋𝑋𝑁𝑁)
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Convolutional layers (2D grid case)
• Alternative to the “all to all”(vector to vector) connections
• Preserves the 2D image topology via “feature maps”
• 𝑋𝑋𝑛𝑛 are 3D data (“tensors”) instead of vectors
• 2 of the dimensions are aligned with the image grid
• The third dimension is a set of values associated to a 

grid location (gathered in a vector per location but 
without associated topology)

• Each component in the third dimension correspond to a 
“map” aligned with the image grid

• Each data tensor is a “stack” of features maps
• Translation-invariant (relatively to the grid) processing
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3D tensor data (2D grid case)

Image 
height

Image 
width

Feature 
maps

Set of values 
associated to 
a single grid 
location

Input image data is a special case with 3 feature maps 
corresponding to the RGB planes and sometimes 4 or even 
more for RGB-D or for hyper-spectral (satellite) image data.
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Convolutional layers (2D grid case)

• Each map point is connected to all maps points of  a 
fixed size neighborhood in the previous layer

• Weights between maps are shared so that they are 
invariant by translation in the image plane
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Convolutional layers (2D grid case)

• Combination of:
–convolutions within the image plane
– “all to all” within the map dimension

• Separable or non-separable combinations
• Resolution changes across layers: stride and 

pooling
• Examples: LeNet (1998) and AlexNet (2012)
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Classical image convolution (2D to 2D)
• Classical image convolution (2D to 2D):
𝑂𝑂 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = �

𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• Convolutional layer (3D to 3D):
• m and n : within a window around the current 

location, corresponding to the filter size
• 𝐾𝐾(𝑚𝑚,𝑛𝑛) : convolution kernel
• Example: (circular) Gabor filter: 

𝐾𝐾 𝑚𝑚,𝑛𝑛 = 1
2𝜋𝜋𝜎𝜎2

. 𝑒𝑒−
𝑚𝑚2+𝑛𝑛2

2𝜎𝜎2 . 𝑒𝑒
2𝜋𝜋𝑖𝑖𝑚𝑚.cos θ+𝑛𝑛.sin θ

λ
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Classical image convolution (2D to 2D)

3x3 convolution, no stride, half padding
Animation from https://github.com/vdumoulin/conv_arithmetic/
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Classical image convolution (2D to 2D)

3×3 convolution, no stride, no padding
Animation from https://github.com/vdumoulin/conv_arithmetic/



Georges Quénot                     M2-GI-IDM                        2023-2024 39

Classical image convolution (2D to 2D)

3×3 convolution, no stride, full padding
Animation from https://github.com/vdumoulin/conv_arithmetic/
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Set of image convolutions (2D to 3D)

• Set of image convolution (2D to 3D):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 𝑙𝑙 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = �

𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• 𝑙𝑙 : index of the convolution map

• Example: Set of (circular) Gabor filters:

𝐾𝐾 𝑙𝑙,𝑚𝑚,𝑛𝑛 = 1
2𝜋𝜋𝜎𝜎𝑙𝑙

2 . 𝑒𝑒
−𝑚𝑚

2+𝑛𝑛2

2𝜎𝜎𝑙𝑙
2 . 𝑒𝑒

2𝜋𝜋𝑖𝑖𝑚𝑚.cos θ𝑙𝑙+𝑛𝑛.sin θ𝑙𝑙
λ𝑙𝑙

𝜎𝜎𝑙𝑙 , λ𝑙𝑙 ,𝜃𝜃𝑙𝑙 1≤𝑙𝑙≤𝐿𝐿 : set of (circular) Gabor filter parameters

practical filter size: ±4λ𝑙𝑙
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Example Gabor Filter Kernels

Example of (elliptic) filters with 8 orientations and 4 scales
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Convolutional layers
• Set of image convolution (2D to 3D):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 𝑙𝑙 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = �

𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• Convolutional layer: multiple maps (planes) both in input 
and output (3D to 3D, plus bias):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐵𝐵 𝑙𝑙 + �

𝑘𝑘,𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑘𝑘, 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑘𝑘, 𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• k and l: indices of the feature maps in the input and output 
layers

• m and n: within a window around the current location, 
corresponding to the feature size
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Convolutional layers
• Convolutional layer: multiple maps (planes) both in input 

and output (3D to 3D, plus bias):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐵𝐵 𝑙𝑙 + �

𝑘𝑘,𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑘𝑘, 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑘𝑘, 𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• Operation relative to (𝑚𝑚,𝑛𝑛) : convolution

• Operation relative to (𝑘𝑘, 𝑙𝑙) : matrix multiplication plus bias 
(equals affine transform)

• Combination of:
– Convolution within the image plane, image topology
– Classical all to all “perpendicularly” to the image plane, no topology

• If image size and filter size = 1: fully connected “all to all”
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Convolutional layers (3D to 3D)

2(input)×3×3×3(output) convolution, no stride, no padding
Illustration from https://arxiv.org/abs/1603.07285
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Convolutional layers
• The convolution layer kernel is: (𝐷𝐷 + 2)-dimensional for 𝐷𝐷-

dimensional input data, e.g. 𝐷𝐷 = 2 for still images, 𝐷𝐷 = 3 for 
video segments or scanner images.

• For color images, the RGB (or YUV or HSV …) planes 
directly enter the first layer as a 3D volume of size              
width × height × 3

• There is one unit (neuron) per “pixel” in the output               
𝐷𝐷-dimensional topology and per output feature map

• Unit set: set of units associated to a 𝐷𝐷-dimensional grid 
location, one unit per output feature map, one set per grid 
location

• There is a single translation-invariant (𝐷𝐷 + 2)-dimensional 
kernel per layer for mapping input pixel vectors to output 
pixel vectors at all 𝐷𝐷-dimensional grid locations
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Resolution changes and side effects

• Side (border) effect:
– crop the output “image” relative to the input one and/or
– pad the image if the filter expand outside 

• Resolution change (generally reduction):
– Stride: subsample, e.g. compute only one out of N, and/or
– Pool: compute all and apply an associative operator to compute 

a single value for the low resolution location from the high 
resolution ones, e.g.:

• Common pooling operators: maximum or average

• Pooling correspond to a separate back-propagation 
module (as for the linear and non-linear parts of a layer)

𝑂𝑂(𝑘𝑘, 𝑖𝑖, 𝑗𝑗) = op(𝐼𝐼(𝑘𝑘, 2𝑖𝑖, 2𝑗𝑗), 𝐼𝐼(𝑘𝑘, 2𝑖𝑖 + 1,2𝑗𝑗), 𝐼𝐼(𝑘𝑘, 2𝑖𝑖, 2𝑗𝑗 + 1), 𝐼𝐼(𝑘𝑘, 2𝑖𝑖 + 1,2𝑗𝑗 + 1))
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Pytorch tutorial network (LeNet)

(Grayscale image)
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Pytorch tutorial network
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Pytorch tutorial network (color image)
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Learning Algorithm

• Training set: 𝑆𝑆 = 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖 1≤𝑖𝑖≤𝐼𝐼 input-output samples

• 𝑋𝑋𝑖𝑖,0 = 𝐼𝐼𝑖𝑖 and   𝑋𝑋𝑖𝑖,𝑛𝑛+1 = 𝐹𝐹𝑛𝑛+1 𝑊𝑊𝑛𝑛+1,𝑋𝑋𝑖𝑖,𝑛𝑛

• Note: regarding this notation the vector-matrix 
multiplication counts as one layer and the element-wise 
non-linearity counts as another one (not mandatory but 
greatly simplifies the layer modules’ implementation)

• Error (empirical risk) on the training set:                                            
𝐸𝐸𝑆𝑆 𝑊𝑊 = ∑𝑖𝑖 𝐹𝐹 𝑊𝑊, 𝐼𝐼𝑖𝑖 − 𝑂𝑂𝑖𝑖 2 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖,𝑁𝑁 − 𝑂𝑂𝑖𝑖

2

• Minimization on 𝑊𝑊 of 𝐸𝐸𝑆𝑆 𝑊𝑊 by gradient descent
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Gradient descent
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Error back-propagation
• Minimization of 𝐸𝐸𝑆𝑆 𝑊𝑊 by gradient descent:

– The gradient indicate an ascending direction: move in the opposite

– Randomly initialize 𝑊𝑊 0

– Iterate 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑊𝑊 𝑡𝑡 η = 𝑓𝑓 𝑡𝑡 or  𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 𝑊𝑊 𝑡𝑡

−1

– 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2

… 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁

( 𝑊𝑊 = 𝑊𝑊1,𝑊𝑊2 … 𝑊𝑊𝑁𝑁 )

– Back-propagation: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑛𝑛

is computed by backward recurrence from 

𝜕𝜕𝐹𝐹𝑛𝑛
𝜕𝜕𝜕𝜕𝑛𝑛

and  
𝜕𝜕𝐹𝐹𝑛𝑛

𝜕𝜕𝑋𝑋𝑛𝑛−1
applying iteratively   𝑔𝑔 𝑜𝑜 𝑓𝑓 ′ = 𝑔𝑔′𝑜𝑜 𝑓𝑓 .𝑓𝑓𝑓

– Two derivatives, relative to weight and to data to be considered
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Stochastic gradient descent
and batch processing

• 𝐸𝐸𝑆𝑆 𝑊𝑊 = ∑𝑖𝑖 𝐹𝐹 𝑊𝑊, 𝐼𝐼𝑖𝑖 − 𝑂𝑂𝑖𝑖 2 = ∑𝑖𝑖 𝐸𝐸𝑖𝑖 𝑊𝑊

• 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝑡𝑡 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡 = 𝑊𝑊 𝑡𝑡 − ∑𝑖𝑖 η 𝑡𝑡 𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

𝑡𝑡

• Global update (epoch): sum of per sample updates

• Classical GD: update 𝑊𝑊 globally after all 𝐼𝐼 samples have 
been processed (1 ≤ 𝑖𝑖 ≤ 𝐼𝐼)

• Stochastic GD: update 𝑊𝑊 after each processed sample 
→ immediate effect, faster convergence

• Batch: update 𝑊𝑊 after a given number (typically between 
32 and 256) of processed samples → parallelism
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Learning rate evolution

• 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝑡𝑡 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑊𝑊 𝑡𝑡

• Large learning rate: instability

• Small learning rate: slow convergence

• Variable learning rate: learning rate decay policy

• Most often: step strategy: iterate “constant during a 
number of epochs, then divide by a given factor”

• Possibly different learning rates for different layers or for 
different types of parameters, generally with common 
evolution
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Error back-propagation (adapted from Yann LeCun)

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Ac

cu
m

ul
at

e 
an

d 
up

da
te

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with 
respect to 𝑋𝑋𝑛𝑛.  For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
Then backward recurrence:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑋𝑋𝑛𝑛−1

Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

η

Forward pass
Data backward pass

Param backward pass
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Error back-propagation 0: Prediction mode

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

Pa
ra

m
et

er
 s

to
ra

ge
Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝑋𝑋1

𝑂𝑂 = 𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
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Error back-propagation 1: loss function

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶(𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

O

𝐸𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

Loss function (for one sample):
𝐸𝐸 = 𝐶𝐶 𝑋𝑋𝑁𝑁 ,𝑂𝑂
𝐸𝐸 𝑊𝑊, 𝐼𝐼,𝑂𝑂 = 𝐶𝐶 𝐹𝐹 𝑊𝑊, 𝐼𝐼 ,𝑂𝑂

Sum over the whole training 
set or over a batch of samples:

𝐸𝐸 𝑊𝑊 = �
𝑖𝑖

𝐸𝐸 𝑊𝑊, 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖

Same 𝑊𝑊, different 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖

Update:

𝑊𝑊 = 𝑊𝑊 − 𝜂𝜂
𝜕𝜕𝐸𝐸 𝑊𝑊
𝜕𝜕𝑊𝑊

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
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Error back-propagation 2: Data backward pass

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶(𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

O

𝐸𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶(𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with 
respect to 𝑋𝑋𝑛𝑛.  For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
Then backward recurrence:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑋𝑋𝑛𝑛−1

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
Data backward pass
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Error back-propagation 3: Parameter backward pass

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with 
respect to 𝑋𝑋𝑛𝑛.  For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
Then backward recurrence:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑋𝑋𝑛𝑛−1

Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
Data backward pass

Param backward pass
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Error back-propagation 4: Accumulate and update

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Ac

cu
m

ul
at

e 
an

d 
up

da
te

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)
…
Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑊𝑊𝑛𝑛

Accumulate gradients and 
update parameters.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:

𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛 − 𝜂𝜂�
𝑖𝑖

𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

𝑊𝑊, 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖

Usually on batches

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

η

Forward pass
Data backward pass

Param backward pass
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Error back-propagation: simplified notations

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Ac

cu
m

ul
at

e 
an

d 
up

da
te

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with 
respect to 𝑋𝑋𝑛𝑛.  For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶
𝜕𝜕𝑋𝑋𝑁𝑁

Then backward recurrence:
𝜕𝜕𝐸𝐸

𝜕𝜕𝑋𝑋𝑛𝑛−1
=

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝑋𝑋𝑛𝑛
𝜕𝜕𝑋𝑋𝑛𝑛−1

Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝑋𝑋𝑛𝑛
𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
Data backward pass

Param backward pass

η
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Layer module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝑊𝑊

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝑊𝑊

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝐹𝐹(𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛)𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑊𝑊

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛× ×

Notes:  𝑋𝑋𝑖𝑖𝑛𝑛 ≡ 𝑋𝑋𝑛𝑛−1 ,  𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 ≡ 𝑋𝑋𝑛𝑛 ,  𝑊𝑊 ≡ 𝑊𝑊𝑛𝑛 and 𝐹𝐹 ≡ 𝐹𝐹𝑛𝑛 for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁
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Layer module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝑊𝑊

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝑊𝑊

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝐹𝐹(𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛)
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛× ×

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

≡
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑊𝑊 ≡

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊
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Layer module (adapted from Yann LeCun)

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

≡
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑊𝑊 ≡

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

Gradient back-propagation rule:

The gradient relative to the input (either 𝑊𝑊 or 𝑋𝑋𝑖𝑖𝑛𝑛) is 
equal to the gradient relative to the output (𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡) 
times the Jacobian of the transfer function 
(respectively 𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
or 𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛
, left vector multiplication)
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Autograd variable (PyTorch)

data : 𝑋𝑋 (may be 𝑋𝑋𝑖𝑖𝑛𝑛, 𝑊𝑊 or 𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡)

grad : 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋

𝐸𝐸 : where backward() was called from
grad_fn : 𝐹𝐹 | 𝑋𝑋 = 𝐹𝐹(… ) : "None" for 𝑊𝑊 or for inputs
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Autograd Variable and function

Input may be multiple (𝑋𝑋𝑖𝑖𝑛𝑛,𝑊𝑊)
Autograd does not care about input types
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Autograd variable (PyTorch)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

𝑋𝑋𝑛𝑛

𝑁𝑁𝑜𝑜𝑙𝑙𝑙𝑙

𝑊𝑊𝑛𝑛 ∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂E/ ∂Xn𝑋𝑋𝑛𝑛

𝐹𝐹𝑛𝑛

𝑋𝑋𝑛𝑛−1 ∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

𝐹𝐹𝑛𝑛−1

𝐹𝐹𝑛𝑛

𝑊𝑊𝑛𝑛 is an input, 
not produced by 
any function: 
grad_fn = Null

𝑋𝑋0 is an input,       
not produced by   
any function:        
grad_fn = Null for 𝑋𝑋0

contains both     
the data forward function 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

⋅
𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑛𝑛−1

𝜕𝜕𝑋𝑋𝑛𝑛−1
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

⋅
𝜕𝜕𝐹𝐹 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1

𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋𝑛𝑛 = 𝐹𝐹 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1

and the gradient backward 
function(s)  
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Autograd variable (PyTorch)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑁𝑁

𝑂𝑂

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂E/ ∂E

∂𝐸𝐸/ ∂𝑂𝑂

𝐸𝐸

𝑁𝑁𝑜𝑜𝑙𝑙𝑙𝑙

𝑂𝑂 ∂𝐸𝐸/ ∂𝑂𝑂

∂E/ ∂E𝐸𝐸

𝐶𝐶

𝑋𝑋𝑁𝑁 ∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

𝐹𝐹𝑁𝑁

𝐶𝐶

𝑂𝑂 is an input,   
not produced by 
any function: 
grad_fn = Null

contains both     
the data forward function 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝐸𝐸

⋅
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
𝜕𝜕𝐸𝐸
𝜕𝜕𝑂𝑂

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝐸𝐸

⋅
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑂𝑂

𝐸𝐸 = 𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂
and the gradient backward 
function(s)  
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Autograd backward()

Define 𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1) for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁 (or arbitrary network)
End with 𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)
Execute a forward pass for a training sample (𝐼𝐼,𝑂𝑂)
Call E.backward()   (backward pass from 𝐸𝐸 with ∂𝐸𝐸/∂𝐸𝐸=1)
Get all ∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛 (and ∂E/ ∂Xn) for that training sample
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Linear module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝑊𝑊

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝑊𝑊

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑊𝑊𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊

= 𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝑊𝑊

Note: 𝑋𝑋𝑖𝑖𝑛𝑛 and 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 are regular (column) vectors and 𝑊𝑊 is a matrix while ∂E/ ∂Xin
and ∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡 are transpose (row) vectors, this is because d𝐸𝐸 = (∂𝐸𝐸/ ∂𝑋𝑋).d𝑋𝑋 . 
∂𝐸𝐸/ ∂𝑊𝑊 is a transposed matrix which is the outer product of the regular and 
transpose vectors 𝑋𝑋𝑖𝑖𝑛𝑛 and ∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡 .

Forward pass
Data backward pass

Param backward pass
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Pointwise module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝐵𝐵

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝐵𝐵

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵)𝜕𝜕𝐸𝐸
𝜕𝜕𝐵𝐵

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

o 𝑓𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵) 𝑇𝑇 𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

o 𝑓𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵) 𝑇𝑇

Notes: 𝐵𝐵 is a bias vector on the input. 𝑋𝑋𝑖𝑖𝑛𝑛, 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 and 𝐵𝐵 are regular (column) vectors 
all of the same size while ∂E/ ∂Xin and ∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡 and ∂𝐸𝐸/ ∂𝐵𝐵 are transpose vectors 
also of the same size. 𝑓𝑓 is a scalar function applied pointwise on 𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵. 𝑓𝑓𝑓 is the 
derivative of 𝑓𝑓 and is also applied pointwise. The multiplication by 𝑓𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵) 𝑇𝑇

is also performed pointwise (Hadamard product denoted “o” here).
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Non-linear functions

• Sigmoid: 𝑧𝑧 = 1
1+𝑒𝑒𝑦𝑦

• Hyperbolic tangent: 𝑧𝑧 = tanh𝑦𝑦

• Rectified Linear Unit (ReLU): 𝑧𝑧 = max(0,𝑦𝑦)

• Programmable ReLU (PReLU) : 𝑧𝑧 = max(α𝑦𝑦,𝑦𝑦)
with α learned (i.e. α ⊂𝑊𝑊)

• …

• Appropriate non-linear functions lead to better 
performance and/or faster convergence

• Avoid vanishing / exploding gradients
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Neural Networks in practice

• Good news is that autograd automatically and 
transparently takes care of gradients computation and 
propagation; you just have to call .backward()

• You only have to define the forward network sequence 

• You still have to select various hyper-parameters and to 
organize:

– iterations
– batch processing
– learning rate schedule
– possibly data augmentation
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Momentum

• Optimization and regularization technique
• One-level update rule:

– Gradient modifies position: 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡

• Two-level update rule: 
– Gradient modifies velocity:  𝑉𝑉 𝑡𝑡 + 1 = β𝑉𝑉 𝑡𝑡 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑡𝑡

– Velocity modifies position:  𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η𝑉𝑉 𝑡𝑡

– β is chosen slightly smaller than 1: small corrections

• Implement “inertia”: more stable trajectories
• Allows crossing of saddle points
• Faster training, better performance
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Weight decay

• Regularization technique

• Add a penalty term to the Empirical Risk function

• 𝐸𝐸 𝑊𝑊 → 𝐸𝐸 𝑊𝑊 + λ
2
𝑊𝑊2

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡 → 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡 + λ𝑊𝑊 𝑡𝑡

• λ chosen as a small value, typical 10−4

• Avoid divergence of parameter values



Georges Quénot                     M2-GI-IDM                        2023-2024 76

Dropout
• Regularization technique
• During training, at each epoch, neutralize a given 

(typically 0.2 to 0.5) proportion p of randomly selected 
connections

• Compensation with a multiplicative 1/(1−p) factor for the 
remaining connections

• All connections active during evaluation
• Avoid concentration of activations on particular 

connections
• More robust operation, faster training, better performance
• Counts as a function (forward and backward parts)
• Different modes for training and evaluation
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Batch Normalization

• Stabilization technique

• Necessary for training very deep networks

• Maintain the dynamic range of the incoming data in a 
stable region, preventing it from diverging across 
numerous layers 

• γ and β are learnable parameters

• ε is for avoiding division by 0 for constant data



Georges Quénot                     M2-GI-IDM                        2023-2024 78

Batch Normalization

• No need for bias in the preceding layer (ignored)

• Running estimates during training used during evaluation

• Counts as a function (forward and backward parts)

• Different modes for training and evaluation

• Faster training, better performance
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Softmax

• Normalization of output as probabilities 
(positive values summing to 1) for the multi-
class problem (i.e. target categories are 
mutually exclusive)

• 𝑧𝑧𝑖𝑖 = 𝑒𝑒𝑦𝑦𝑖𝑖
∑𝑗𝑗 𝑒𝑒

𝑦𝑦𝑗𝑗

• Not suited for the multi-label case (i.e. target 
categories are not mutually exclusive)

• Associated loss function is cross-entropy
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Cross-entropy loss (multi-class)
• 𝑝𝑝𝑖𝑖 : probability vector for class 𝑖𝑖
• 𝑙𝑙𝑖𝑖 : truth value for class 𝑖𝑖 (“one hot encoding”) 
• 𝐿𝐿 = ∑𝑖𝑖 − 𝑙𝑙𝑖𝑖 log 𝑝𝑝𝑖𝑖
• For exclusive classes, 𝑙𝑙𝑖𝑖 is equal to 1 only for the right 

class 𝑖𝑖0 and to 0 otherwise:
• 𝐿𝐿 = − log 𝑝𝑝𝑖𝑖0 (log 1 = 0 and log 0 = −∞)
• Forces 𝑝𝑝𝑖𝑖0 to be close to 1, very high loss value if 𝑝𝑝𝑖𝑖0 is 

close to 0 → faster convergence
• Other 𝑝𝑝𝑖𝑖 indirectly forced to be close to 0 because the 
𝑝𝑝𝑖𝑖s sums to 1

• With softmax: forces 𝑦𝑦𝑖𝑖0 to be greater than the other 𝑦𝑦𝑖𝑖s
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Cross-entropy loss (multi-label)
• Non-exclusive categories are called labels and are 

seen as independent, each with two-classes 
• 𝑝𝑝𝑖𝑖 : probability vector for label 𝑖𝑖
• 𝑙𝑙𝑖𝑖 : truth value for label 𝑖𝑖 (either 0 or 1) 

• Sigmoid “normalization”: 𝑝𝑝𝑖𝑖 = 1
1+𝑒𝑒−𝑦𝑦𝑖𝑖

and 1 − 𝑝𝑝𝑖𝑖 = 1
1+𝑒𝑒𝑦𝑦𝑖𝑖

• 𝐿𝐿 = ∑𝑖𝑖 − 𝑙𝑙𝑖𝑖 log 𝑝𝑝𝑖𝑖 + (1 − 𝑙𝑙𝑖𝑖)log(1 − 𝑝𝑝𝑖𝑖)
• Same formula as for multi-class with a two-class 

problem for each label
• Sum of CE Losses per label
• Note: works also if 𝑙𝑙𝑖𝑖 has non-binary values 

(probabilities of the true distribution)
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AlexNet (ImageNet Challenge 2012)
[Krizhevsky et al., 2012]
• 7 hidden layers, 650K units, 60M parameters (W )
• GPU implementation (50× speed-up over CPU)
• Trained on two GTX580-3GB GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with 
Deep Convolutional Neural Networks, NIPS 2012
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AlexNet “conv5” example

• Number of units (“neurons”) in a layer (= size of the output tensor): 
output image width (13) × output image height (13) × number of 
output planes (256) = 43,264

• Number of weights in a layer (= number of weights in a layer): 
number of input planes (384) × number of output planes (256) ×
filter width (3) × filter height (3) = 884,736  (884,992 including biases)

• Number of connections: number of grid locations × number of 
weights in a unit set (excluding biases) = 149,520,384
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Yann LeCun recommendations
• Use ReLU non-linearities (tanh and logistic are falling out of favor)
• Use cross-entropy loss for classification
• Use Stochastic Gradient Descent on minibatches
• Shuffle the training samples
• Normalize the input variables (zero mean, unit variance)
• Schedule to decrease the learning rate
• Use a bit of L1 or L2 regularization on the weights (or a combination)

– But it's best to turn it on after a couple of epochs
• Use “dropout” for regularization

– Hinton et al 2012 http://arxiv.org/abs/1207.0580
• Lots more in [LeCun et al. “Efficient Backprop” 1998]
• Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 

edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

http://arxiv.org/abs/1207.0580
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Recent trends

• VGG and GoogLeNet (16-19 and 22 layers)
• Residual networks (152 layers with “shortcuts”)
• Stochastic depth networks (up to 1202 layers)
• Dense Networks
• Weakly supervised / unsupervised learning
• Generative adversarial networks
• Segmentation networks
• Multimodal embeddings
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GoogLeNet (very deep)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

9 “inception” modules
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GoogLeNet (very deep)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

Reminder: 1x1 convolutions actually implements an all-to-all between 
the input and output maps (pixel-wise all-to-all)
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VGG Network (very deep)

Simonyan and Zisserman, Andrew: Very Deep Convolutional Networks 
for Large-Scale Image Recognition, CVPR 2014.

All 3x3 convolutions
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Residual networks (ultra deep) 

He, Zhang, Ren and Sun: Deep Residual Learning for Image 
Recognition, CVPR 2015

Ultra deep network with “shortcuts”
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Stochastic depth networks (extremely deep) 

Huang et al.: Deep Networks with Stochastic Depth, CVPR 2016

ResNet with stochastic depth
“Dropout at the layer level”



Georges Quénot                     M2-GI-IDM                        2023-2024 91

Dense networks 

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

All layers connected to all layers
(in the forward direction only and 
without resolution change



Georges Quénot                     M2-GI-IDM                        2023-2024 92

Dense networks 

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

A deep DenseNet with three dense blocks
The layers between blocks are transition layers that change the 
resolution via convolution and pooling
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Weakly / unsupervised learning
• Gather millions (from 1 to 100) of images from the web
• Two main strategies:

– Query an image search engine (e.g. Google) with either target 
tags or descriptions → we can choose the categories

– Download images with associated descriptions from a social 
network (e.g. Flickr) and extract/select tags from the description 
→ we have to do with the available categories

• Filter the results (may use cross-validation predictions)
• Train from noisy data and compensate the loss due to 

noise with a gain from quantity
• Work on the quality of the category-image association
• Use classifiers or features for transfer learning
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Weakly / unsupervised learning
• Webly Supervised Learning of Convolutional Networks                              

Xinlei Chen and Abhinav Gupta                                                          
arXiv:1505.01554, May 2015

• Effective training of convolutional networks using noisy Web images        
Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu
CBMI, June 2015

• Learning from Massive Noisy Labeled Data for Image Classification         
Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang        
CVPR, June 2015

• Harnessing Noisy Web Images for Deep Representation                           
Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu
arXiv:1512.04785, July 2016

• Learning Visual Features from Large Weakly Supervised Data               
Armand Joulin, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache
ECCV, Sep. 2016
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Engineered versus learned descriptors
• Classical “classification pipeline”

– Extraction(s) – [aggregation] – optimization(s) –
classifier(s) – one or more levels of fusion – re-scoring 
(non exhaustive example)

– Most of the stages are explicitly engineered: the form 
of descriptors or processing steps has been thought 
and designed by a skilled engineer or researcher

– Lots of experience and acquired expertise by 
thousands of smart people over tens of years

– Learning concerns only the classifier(s) stages and a 
few hyper-parameters controlling the other ones

– Almost everything has been tried
– The more you incorporate, the more you get (at a cost)
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Engineered versus learned descriptors
• Deep learning pipeline: MLP with about 8 layers

– Advances in computing power (Tflops): large networks possible
– Algorithmic advance: combination of convolutional layers for the 

lower stages with all-to-all layers; the topology of the image is 
preserved in the lower layers with weights shared between the 
units within a layer

– Algorithmic advances: NN researchers finally find out how to have 
back-propagation working for MLP with more than three layers

– Image pixels are entered directly into the first layer
– The first (resp. intermediate, last) layers practically compute low-

level (resp. intermediate level, semantic) descriptors
– Everything is made using a unique and homogeneous architecture
– A single network can be used for detecting many target concepts
– All the level are jointly optimized at once
– Requires huge amounts of training data
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Transfer Learning
• Train a multi-class classifier on large annotated 

data collection, e.g. ImageNet
• Extract hidden layers (or final) layers, typically 

close to the end as they contain very general and 
highly semantic information, e.g. FC6 (4096), FC7 
(4096) and/or FC8 (1000) in an AlexNet

• Use them as descriptors for completely different 
tasks, either in classification or in retrieval

• PCA-based dimensionality reduction works very 
well, producing both very compact (few hundreds 
components “only”) and very effective descriptors
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Deep Learning and IAR
• Indexing for key-word-based search

– Get an estimate of presence probability for an as large as 
possible set of concepts / categories

– Map any query to a subset of them
– Score the multimedia samples according to the presence 

probabilities of the selected ones

• Query by example or instance search
– Use last layers values (output or last but one or last but two) 

as semantic feature vectors (descriptors) for the query and 
the candidate

– Classical QBE with Euclidean distance or scalar product
– Possibility to do even better by “metric learning”
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Metric learning with Siamese Networks
• Two-branch Siamese network: find representations that 

produces small distances between “similar” element 
and large distances between “dissimilar” elements: 
enter matching or non-matching pairs

• Three-branch Siamese network: find representations 
that produces smaller distances between “similar” 
element than between “dissimilar” elements: enter 
(query, positive, negative) triplets

• Triplet loss (Gordo et al. 2016):
𝐿𝐿 𝐼𝐼𝑞𝑞 , 𝐼𝐼+, 𝐼𝐼− =

1
2

max 0,𝑚𝑚 + 𝑞𝑞 − 𝑑𝑑+ 2 − 𝑞𝑞 − 𝑑𝑑− 2

• The choice of the 𝐼𝐼𝑞𝑞, 𝐼𝐼+ and 𝐼𝐼− samples is important: 
use neither too easy nor too difficult ones
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Metric learning with Siamese Networks

• Shared weights between branches learned or fine-tuned 
using triplets

• A single branch (without loss) extracts representations
• Region of interest (ROI) pooling is also used (implicit 

learning of where the targets of interest might be)
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Feed-forward network on a sequence

ℎ𝑜𝑜 = 𝜎𝜎 𝑊𝑊ℎ𝑥𝑥𝑜𝑜 + 𝑏𝑏ℎ
𝑦𝑦𝑜𝑜 = 𝜎𝜎 𝑊𝑊𝑦𝑦ℎ𝑜𝑜 + 𝑏𝑏𝑦𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

𝑊𝑊ℎ 𝑊𝑊ℎ 𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦

Independent predictions: no history
Training on samples
Only two linear layers here: not deep (usually more)



Georges Quénot                     M2-GI-IDM                        2023-2024 102

Simple recurrent network (Elman)

ℎ𝑜𝑜 = 𝜎𝜎 𝑊𝑊ℎ𝑥𝑥𝑜𝑜 + 𝑈𝑈ℎℎ𝑜𝑜−1 + 𝑏𝑏ℎ
𝑦𝑦𝑜𝑜 = 𝜎𝜎 𝑊𝑊𝑦𝑦ℎ𝑜𝑜 + 𝑏𝑏𝑦𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

h0

𝑊𝑊ℎ 𝑊𝑊ℎ 𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦

𝑈𝑈ℎ 𝑈𝑈ℎ 𝑈𝑈ℎ

Sequence (past) history is represented in the hidden states
Training on sequences (unfolded loop)
Back-propagation through many hidden states: deep
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Simple recurrent network (Jordan)

ℎ𝑜𝑜 = 𝜎𝜎 𝑊𝑊ℎ𝑥𝑥𝑜𝑜 + 𝑈𝑈ℎ𝑦𝑦𝑜𝑜−1 + 𝑏𝑏ℎ
𝑦𝑦𝑜𝑜 = 𝜎𝜎 𝑊𝑊𝑦𝑦ℎ𝑜𝑜 + 𝑏𝑏𝑦𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

𝑊𝑊ℎ 𝑊𝑊ℎ 𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦

𝑈𝑈ℎ 𝑈𝑈ℎ 𝑈𝑈ℎ

Sequence (past) history is represented in the hidden states
Training on sequences (unfolded loop)
Back-propagation through many hidden states: deep

y0
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Folded (usual) representations

xt

ht

yt

𝑊𝑊ℎ

𝑊𝑊𝑦𝑦

𝑈𝑈ℎ

Elman                          Jordan

xt

ht

yt

𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑈𝑈ℎ
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Recurrent neural networks
• Perform sequence-to-sequence transformations
• Learns patterns in sequences
• Used in speech and in natural language processing
• Used in video processing (action recognition)
• Simple RNNs have limitations (unstable gradients)
• Variants with “memory cells”:

– Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
– Gated Recurrent Units (Cho et al., 2014) (simplified LSTM)
– Avoid exploding or vanishing gradients on long sequences
– Can “count”
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Word embeddings
• Map words in a D-dimensional space with semantic 

distances and relations roughly preserved

From
Mikolov, 2013
(Word2Vec)
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Word2Vec (Mikolov et al., 2013)
• Words are represented by “1-hot encoding”
• Encoder-decoder architectures

– Encoder: V dims to D dims linear map(s)
– Decoder: D dims to V dims linear map(s)
– V: vocabulary size, D: embedding size

• Two variants:
– CBOW: predict single words from their neighbors
– Skip-gram: predict neighbors from single words (better)

• The intermediate representation is the embedding
• Unsupervised learning: from huge amounts of raw data
• Learning by gradient descent
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Word2Vec skip grams

1 encoding matrix
4 decoding matrices

All source and
target vectors are
1-hot encoded
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