
Georges Quénot M2-GI-IDM 2023-2024 1

Multimedia Indexing and Retrieval
Deep Learning for multimedia indexing and retrieval

Georges Quénot
Multimedia Information Modeling and Retrieval Group

Laboratory of Informatics of Grenoble

Georges Quénot M2-GI-IDM 2023-2024 2

Outline
• Introduction
• Machine learning
• Loss function
• Formal neuron
• Single layer perceptron
• Multilayer perceptron
• Reminders about differential calculus
• Back-propagation
• Learning rate
• Mini-batches
• Convolutional layers
• Pooling, softmax …

Georges Quénot M2-GI-IDM 2023-2024 3

Georges Quénot M2-GI-IDM 2023-2024 4

ImageNet Classification 2012 Results
Krizhevsky et al. – 16.4% error (top-5)
Next best (Pyr. FV on dense SIFT) – 26.2% error

Georges Quénot M2-GI-IDM 2023-2024 5

ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

• 1000 visual “fine grain” categories / labels (exclusive)
• 150,000 test images (hidden “ground truth”)
• 50,000 validation images
• 1,200,000 training images
• Each training, validation or test image falls within exactly one

of the 1000 categories
• Task: for each image in the test set, rank the categories

from most probable to least probable
• Metric: top-5 error rate: percentage of images for which the

actual category is not in the five first ranked categories
• Held from 2010 to 2015, frozen since 2012

Georges Quénot M2-GI-IDM 2023-2024 6

ImageNet Classification 2013 Results
http://www.image-net.org/challenges/LSVRC/2013/results.php
Demo: http://www.clarifai.com/

http://www.image-net.org/challenges/LSVRC/2013/results.php
http://www.clarifai.com/

Georges Quénot M2-GI-IDM 2023-2024 7

For comparison, human performance is 5.1% (Russakovsky et al.)

Going deeper and deeper

Georges Quénot M2-GI-IDM 2023-2024 8

Deep Convolutional Neural Networks

• Decades of algorithmic improvements in neural networks
(Stochastic Gradient Descent, initialization, momentum …)

• Very large amounts of properly annotated data (ImageNet)
• Huge computing power (Teraflops × weeks): GPU!
• Convolutional networks
• Deep networks (>> 3 layers)
• ReLU (Rectified Linear Unit) activation functions
• Batch normalization
• Drop Out
• …

Georges Quénot M2-GI-IDM 2023-2024 9

Deep Learning is (now) EASY

• Maths: linear algebra and differential calculus (training only)
– 𝑌𝑌 = 𝐴𝐴.𝑋𝑋 + 𝐵𝐵 (with tensor extension)
– 𝑓𝑓 𝑥𝑥 + ℎ = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓′ 𝑥𝑥 . ℎ + 𝑜𝑜 ℎ (with multidimensional variables)
– 𝑔𝑔 𝑜𝑜 𝑓𝑓 ′ 𝑥𝑥 = 𝑔𝑔′𝑜𝑜 𝑓𝑓 𝑥𝑥 . 𝑓𝑓′ 𝑥𝑥 (recursively applied)

• Tools: amazingly integrated, effective and easy to use packages
– Mostly python interface
– Autograd packages: only need to care of the linear algebra part

• Get started with:
– 3-hour course
– 1-hour PyTorch tutorial (familiarity with python assumed)

Georges Quénot M2-GI-IDM 2023-2024 10

Supervised learning
• A machine learning technique for creating a function from training

data.
• The training data consist of pairs of input objects (typically vectors)

and desired outputs.
• The output of the function can be a continuous value (regression)

or a class label (classification) of the input object.
• The task of the supervised learner is to predict the value of the

function for any valid input object after having seen a number of
training examples (i.e. pairs of input and target output).

• To achieve this, the learner has to generalize from the presented
data to unseen situations in a “reasonable” way.

• The parallel task in human and animal psychology is often referred
to as concept learning (in the case of classification).

• Most commonly, supervised learning generates a global model
that helps mapping input objects to desired outputs.

(http://en.wikipedia.org/wiki/Supervised_learning)

Georges Quénot M2-GI-IDM 2023-2024 11

• Target function: f : X → Y
x → y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible image tags:

Learning a target function

𝑓𝑓 = “cat”

𝑓𝑓 = “dog”

𝑓𝑓 = “car”

𝑋𝑋 = �
(𝑤𝑤,ℎ)∈ℕ∗2

[0,1]𝑤𝑤×ℎ×3

𝑌𝑌 = “cat”, “dog” …

Georges Quénot M2-GI-IDM 2023-2024 12

• Target function: f : X → Y
x → y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible tag scores:

Learning a target function

𝑓𝑓 =
𝑋𝑋 = �

(𝑤𝑤,ℎ)∈ℕ∗2
[0,1]𝑤𝑤×ℎ×3

𝑌𝑌 = ℝ “cat”,“dog” … = ℝ𝑐𝑐

0.90
0.04
0.01

…

𝑓𝑓 =

𝑓𝑓 =

0.07
0.88
0.02

…

0.02
0.03
0.86

…

← “cat”
← “dog”
← “car”
← …

Georges Quénot M2-GI-IDM 2023-2024 13

• Target function: f : X → Y
x → y = f(x)

– x : input object, e.g., image descriptor
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible image descriptors:

(or subset of it)

Set of possible tag scores:

𝐷𝐷 is a predefined and fixed function

from to ℝ𝑑𝑑

Learning a target function

𝑓𝑓 𝐷𝐷 = 𝑋𝑋 = ℝ𝑑𝑑

𝑌𝑌 = ℝ𝑐𝑐

0.90
0.04
0.01
…

0.07
0.88
0.02
…

0.02
0.03
0.86
…

𝑓𝑓 𝐷𝐷 =

𝑓𝑓 𝐷𝐷 = �
(𝑤𝑤,ℎ)∈ℕ∗2

[0,1]𝑤𝑤×ℎ×3

Georges Quénot M2-GI-IDM 2023-2024 14

Learning from training data

• Training data: S = (xi, yi)(1 ≤ i ≤ I)
– I : number of training samples

• Learning algorithm: L : (X×Y)* → YX

S → f = L(S)

((X×Y)* = ∪n∈ℕ (X×Y)n)
YX : set of all applications (maps) from X to Y

• Regression or classification system:
y = f(x) = [L(S)](x) = g(S, x)

Georges Quénot M2-GI-IDM 2023-2024 15

Supervised learning
• Target function: f : X → Y

x → y = f(x)
– x : input object (typically vector)
– y : desired output (continuous value or class label)
– X : set of valid input objects
– Y : set of possible output values

• Training data: S = (xi,yi)(1 ≤ i ≤ I)
– I : number of training samples

• Learning algorithm: L : (X×Y)* → YX

S → f = L(S)

• Regression or classification system:
y = f(x) = [L(S)](x) = g(S, x)

Georges Quénot M2-GI-IDM 2023-2024 16

Two types of functions

• Target function: f : X → Y
x → y = f(x)

– maps input objects to desired outputs
– often determined by a set of parameters
– the function or its parameter are learnt from a training set

• Learning algorithm: L : (X×Y)* → YX

S → f = L(S)
– maps training sets to target functions
– often controlled by a set of hyper-parameters
– hyper-parameters may be tuned on a validation set

Georges Quénot M2-GI-IDM 2023-2024 17

Parametric supervised learning
• Parameterized function: 𝑓𝑓: ℝ𝑚𝑚 → YX

𝜃𝜃 → 𝑓𝑓𝜃𝜃

• 𝑓𝑓 is a “meta” function or a family of function

• Target function: 𝑓𝑓𝜃𝜃 : X → Y
x → y = 𝑓𝑓𝜃𝜃 (x)

– X : set of valid input objects (ℝ𝑑𝑑)
– Y : set of possible output values (ℝ𝑐𝑐)

• Training data: S = (xi,yi)(1 ≤ i ≤ I)
– I : number of training samples

• Learning algorithm: 𝐿𝐿𝑓𝑓 : (X×Y)* → ℝ𝑚𝑚 (learns 𝜃𝜃 from S)
S → 𝜃𝜃 = 𝐿𝐿𝑓𝑓 (S)

• Regression or classification system: 𝑦𝑦 = 𝑓𝑓𝜃𝜃 𝑥𝑥 = 𝑓𝑓 𝜃𝜃, 𝑥𝑥

Georges Quénot M2-GI-IDM 2023-2024 18

Single-label loss function
• Quantifies the cost of classification error or the

“empirical risk”

• Example (Mean Square Error): 𝐸𝐸𝑆𝑆 𝑓𝑓 = ∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 (𝑓𝑓 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

• If 𝑓𝑓 depends on a parameter vector θ (L learns θ):
𝐸𝐸𝑆𝑆 θ = 1

2
∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 (𝑓𝑓 θ, 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

• For a linear SVM with soft margin, θ = 𝑤𝑤, 𝑏𝑏 :
𝐸𝐸𝑆𝑆 θ = 1

2
𝑤𝑤 2 + 𝐶𝐶.∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 max(0,1 − 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)

• The learning algorithm aims at minimizing the
empirical risk: θ∗ = argmin

θ
𝐸𝐸𝑆𝑆 θ

Georges Quénot M2-GI-IDM 2023-2024 19

Multi-label loss function

• Predict 𝑃𝑃 labels for each data sample 𝑥𝑥

• 𝑃𝑃 decision functions : f = (fp)(1 ≤ p ≤ P)

• Example with 𝑓𝑓 depending on a parameter vector:

𝐸𝐸𝑆𝑆 θ = 1
2
∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 ∑𝑝𝑝=1

𝑝𝑝=𝑃𝑃(𝑓𝑓𝑝𝑝 θ, 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑝𝑝)2 = 1
2
∑𝑖𝑖=1𝑖𝑖=𝐼𝐼 (𝑓𝑓 θ, 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

(same as single label case with Euclidean distance
between vectors of predictions and vectors of labels)

• θ∗ = argmin
θ

𝐸𝐸𝑆𝑆 θ

• The fp functions may take any real value

Georges Quénot M2-GI-IDM 2023-2024 20

Formal neural or unit (two sub-units)

𝑦𝑦 = �
𝑗𝑗

𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 = 𝑤𝑤. 𝑥𝑥

z

x1
x2
x3
x4
x5

𝑧𝑧 = 𝜎𝜎 𝑦𝑦 + 𝑏𝑏 =
1

1 + 𝑒𝑒𝑦𝑦+𝑏𝑏

linear combination sigmoid function

w,b

𝑥𝑥 : column vector
𝑤𝑤 : row vector

𝑦𝑦, 𝑏𝑏, 𝑧𝑧 : scalars

linear and vector part non-linear and scalar part

Georges Quénot M2-GI-IDM 2023-2024 21

Formal neural or unit (two sub-units)

𝑦𝑦 = �
𝑗𝑗

𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 = 𝑤𝑤. 𝑥𝑥

y

x1
x2
x3
x4
x5

𝑧𝑧 = 𝜎𝜎 𝑦𝑦 + 𝑏𝑏 =
1

1 + 𝑒𝑒𝑦𝑦+𝑏𝑏

linear combination sigmoid function

w

Globally equivalent to a linear SVM followed by a
Platt normalization or to a logistic regression

linear and vector part non-linear and scalar part

zy b

Georges Quénot M2-GI-IDM 2023-2024 22

Neural layer (all to all, two sub-layers)

𝑦𝑦𝑖𝑖 = �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗 𝑧𝑧𝑖𝑖 = σ 𝑦𝑦𝑖𝑖 + 𝑏𝑏𝑖𝑖 =
1

1 + 𝑒𝑒𝑦𝑦𝑖𝑖+𝑏𝑏𝑖𝑖

matrix-vector multiplication per component operation
𝑌𝑌 = 𝑊𝑊.𝑋𝑋 𝑧𝑧 = σ 𝑌𝑌 + 𝐵𝐵

z1

x1

x2

x3

x4

x5

z2

z3

w1,b1

w2,b2

w3,b3

W,B

Georges Quénot M2-GI-IDM 2023-2024 23

Multilayer perceptron (all to all)

o1i1

i2

input
layer

output
layer

i3

i4

o2

o3

o4

hidden
layer

I=X0 X3=OX1 X2
W1,B1 W2,B2 W3,B3

Georges Quénot M2-GI-IDM 2023-2024 24

Multilayer perceptron (all to all)

𝑌𝑌1 = 𝑊𝑊1.𝑋𝑋0 = 𝐹𝐹1 𝑊𝑊1,𝑋𝑋0

o1i1

i2

i3

i4

o2

o3

o4

I=X0 X3=OX1 X2
W1,B1 W2,B2 W3,B3

𝑋𝑋1 =σ 𝑌𝑌1 + 𝐵𝐵1 = 𝐺𝐺1 𝐵𝐵1,𝑌𝑌1
𝑌𝑌2 = 𝑊𝑊2.𝑋𝑋1 = 𝐹𝐹2 𝑊𝑊2,𝑋𝑋1 𝑋𝑋2 =σ 𝑌𝑌2 + 𝐵𝐵2 = 𝐺𝐺2 𝐵𝐵2,𝑌𝑌2
𝑌𝑌3 = 𝑊𝑊3.𝑋𝑋3 = 𝐹𝐹3 𝑊𝑊3,𝑋𝑋2 𝑋𝑋3 =σ 𝑌𝑌3 + 𝐵𝐵3 = 𝐺𝐺3 𝐵𝐵3,𝑌𝑌3

𝑂𝑂 = 𝑋𝑋3 = 𝐺𝐺3 𝐵𝐵3,𝐹𝐹3 𝑊𝑊3,𝐺𝐺2 𝐵𝐵2,𝐹𝐹2 𝑊𝑊2,𝐺𝐺1 𝐵𝐵1,𝐹𝐹1 𝑊𝑊1,𝑋𝑋0 = 𝐼𝐼

𝑂𝑂 = 𝐺𝐺3 𝐵𝐵3 𝑜𝑜 𝐹𝐹3 𝑊𝑊3 𝑜𝑜 𝐺𝐺2 𝐵𝐵2 𝑜𝑜 𝐹𝐹2 𝑊𝑊2 𝑜𝑜 𝐺𝐺1 𝐵𝐵1 𝑜𝑜 𝐹𝐹1 𝑊𝑊1 (𝐼𝐼)

Denoting 𝐹𝐹 𝑊𝑊 so that 𝐹𝐹 𝑊𝑊,𝑋𝑋 = (𝐹𝐹 𝑊𝑊) 𝑋𝑋 :

Georges Quénot M2-GI-IDM 2023-2024 25

Composition of simple functions

𝑋𝑋1 = 𝑊𝑊1.𝑋𝑋0 = 𝐹𝐹1 𝑊𝑊1,𝑋𝑋0 𝑋𝑋2 =σ 𝑋𝑋1 + 𝑊𝑊2 = 𝐹𝐹2 𝑊𝑊2,𝑋𝑋1
𝑋𝑋3 = 𝑊𝑊3.𝑋𝑋2 = 𝐹𝐹3 𝑊𝑊3,𝑋𝑋2 𝑋𝑋4 =σ 𝑋𝑋3 + 𝑊𝑊4 = 𝐹𝐹4 𝑊𝑊4,𝑋𝑋3
𝑋𝑋5 = 𝑊𝑊5.𝑋𝑋4 = 𝐹𝐹5 𝑊𝑊5,𝑋𝑋4 𝑋𝑋6 =σ 𝑋𝑋5 + 𝑊𝑊6 = 𝐹𝐹6 𝑊𝑊6,𝑋𝑋5

𝑂𝑂 = 𝐹𝐹6 𝑊𝑊6 𝑜𝑜 𝐹𝐹5 𝑊𝑊5 𝑜𝑜 𝐹𝐹4 𝑊𝑊4 𝑜𝑜 𝐹𝐹3 𝑊𝑊3 𝑜𝑜 𝐹𝐹2 𝑊𝑊2 𝑜𝑜 𝐹𝐹1 𝑊𝑊1 𝐼𝐼 = 𝑜𝑜𝑛𝑛=1𝑛𝑛=6 𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛 𝐼𝐼

X1 X4

W3

i1

i2

i3

i4

I=X0

W1 W2 W4

o1

o2

o3

o4

X6=O
W6W5

X2 X3 X5

linear non-linear linear non-linear linear non-linear

Splitting units and layers, renaming and renumbering:

Georges Quénot M2-GI-IDM 2023-2024 26

Composition of simple functions

Georges Quénot M2-GI-IDM 2023-2024 27

Composition of simple functions

Georges Quénot M2-GI-IDM 2023-2024 28

Feed Forward Network
• Global network definition:𝑂𝑂 = 𝐹𝐹 𝑊𝑊, 𝐼𝐼

(𝐼𝐼 ≡ 𝑥𝑥 𝑂𝑂 ≡ 𝑦𝑦 𝐹𝐹 ≡ 𝑓𝑓 𝑊𝑊 ≡ θ relative to previous notations)

• Layer values: 𝑋𝑋0,𝑋𝑋1 … 𝑋𝑋𝑁𝑁
with 𝑋𝑋0 = 𝐼𝐼 and 𝑋𝑋𝑁𝑁 = 𝑂𝑂 (𝑋𝑋𝑛𝑛 are vectors)

• Global vector of all unit parameters:
𝑊𝑊 = 𝑊𝑊1,𝑊𝑊2 … 𝑊𝑊𝑁𝑁
(weights by layer are concatenated, 𝑊𝑊𝑛𝑛 can matrices or
vectors or any parameter structure, and even possibly
empty)

• Feed forward: 𝑋𝑋𝑛𝑛+1 = 𝐹𝐹𝑛𝑛+1 𝑊𝑊𝑛𝑛+1,𝑋𝑋𝑛𝑛

• Possibly “joins” and “forks” (but no cycles)

Georges Quénot M2-GI-IDM 2023-2024 29

Classical Image classification

Plus: multiple features, early or late fusion, re-scoring …

Engineered
Feature
Extraction

Classical
Machine
Learning

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Support Vector Machines
Multilayer Perceptrons
Random Forests
…

Descriptors

Georges Quénot M2-GI-IDM 2023-2024 30

Classical Image classification

Still classical since 3-layer MLPs are at least 30 years old

Engineered
Feature
Extraction

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Typically 3 layers
Not really better
than SVMs or
Random Forests

Descriptors

Multilayer
Perceptron

Georges Quénot M2-GI-IDM 2023-2024 31

Deep “end-to-end” Image classification

• Fuzzy boundary between feature extraction and classification even if
there is a transition between convolutional and fully connected layers

• End-to-end learning: features (descriptors) themselves are learned
(by gradient descent) too, not engineered

• Possible only via the use of convolutional layers

ScoresImage

Learned Features Classification

Descriptors of increasing semantic level (𝑋𝑋𝑛𝑛)

Convolutional
And Pooling

Layers

Fully
Connected

Layers(𝑋𝑋0) (𝑋𝑋𝑁𝑁)

Georges Quénot M2-GI-IDM 2023-2024 32

Convolutional layers (2D grid case)
• Alternative to the “all to all”(vector to vector) connections
• Preserves the 2D image topology via “feature maps”
• 𝑋𝑋𝑛𝑛 are 3D data (“tensors”) instead of vectors
• 2 of the dimensions are aligned with the image grid
• The third dimension is a set of values associated to a

grid location (gathered in a vector per location but
without associated topology)

• Each component in the third dimension correspond to a
“map” aligned with the image grid

• Each data tensor is a “stack” of features maps
• Translation-invariant (relatively to the grid) processing

Georges Quénot M2-GI-IDM 2023-2024 33

3D tensor data (2D grid case)

Image
height

Image
width

Feature
maps

Set of values
associated to
a single grid
location

Input image data is a special case with 3 feature maps
corresponding to the RGB planes and sometimes 4 or even
more for RGB-D or for hyper-spectral (satellite) image data.

Georges Quénot M2-GI-IDM 2023-2024 34

Convolutional layers (2D grid case)

• Each map point is connected to all maps points of a
fixed size neighborhood in the previous layer

• Weights between maps are shared so that they are
invariant by translation in the image plane

Georges Quénot M2-GI-IDM 2023-2024 35

Convolutional layers (2D grid case)

• Combination of:
–convolutions within the image plane
– “all to all” within the map dimension

• Separable or non-separable combinations
• Resolution changes across layers: stride and

pooling
• Examples: LeNet (1998) and AlexNet (2012)

Georges Quénot M2-GI-IDM 2023-2024 36

Classical image convolution (2D to 2D)
• Classical image convolution (2D to 2D):
𝑂𝑂 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = �

𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• Convolutional layer (3D to 3D):
• m and n : within a window around the current

location, corresponding to the filter size
• 𝐾𝐾(𝑚𝑚,𝑛𝑛) : convolution kernel
• Example: (circular) Gabor filter:

𝐾𝐾 𝑚𝑚,𝑛𝑛 = 1
2𝜋𝜋𝜎𝜎2

. 𝑒𝑒−
𝑚𝑚2+𝑛𝑛2

2𝜎𝜎2 . 𝑒𝑒
2𝜋𝜋𝑖𝑖𝑚𝑚.cos θ+𝑛𝑛.sin θ

λ

Georges Quénot M2-GI-IDM 2023-2024 37

Classical image convolution (2D to 2D)

3x3 convolution, no stride, half padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Georges Quénot M2-GI-IDM 2023-2024 38

Classical image convolution (2D to 2D)

3×3 convolution, no stride, no padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Georges Quénot M2-GI-IDM 2023-2024 39

Classical image convolution (2D to 2D)

3×3 convolution, no stride, full padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Georges Quénot M2-GI-IDM 2023-2024 40

Set of image convolutions (2D to 3D)

• Set of image convolution (2D to 3D):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 𝑙𝑙 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = �

𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• 𝑙𝑙 : index of the convolution map

• Example: Set of (circular) Gabor filters:

𝐾𝐾 𝑙𝑙,𝑚𝑚,𝑛𝑛 = 1
2𝜋𝜋𝜎𝜎𝑙𝑙

2 . 𝑒𝑒
−𝑚𝑚

2+𝑛𝑛2

2𝜎𝜎𝑙𝑙
2 . 𝑒𝑒

2𝜋𝜋𝑖𝑖𝑚𝑚.cos θ𝑙𝑙+𝑛𝑛.sin θ𝑙𝑙
λ𝑙𝑙

𝜎𝜎𝑙𝑙 , λ𝑙𝑙 ,𝜃𝜃𝑙𝑙 1≤𝑙𝑙≤𝐿𝐿 : set of (circular) Gabor filter parameters

practical filter size: ±4λ𝑙𝑙

Georges Quénot M2-GI-IDM 2023-2024 41

Example Gabor Filter Kernels

Example of (elliptic) filters with 8 orientations and 4 scales

Georges Quénot M2-GI-IDM 2023-2024 42

Convolutional layers
• Set of image convolution (2D to 3D):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 𝑙𝑙 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = �

𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• Convolutional layer: multiple maps (planes) both in input
and output (3D to 3D, plus bias):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐵𝐵 𝑙𝑙 + �

𝑘𝑘,𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑘𝑘, 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑘𝑘, 𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• k and l: indices of the feature maps in the input and output
layers

• m and n: within a window around the current location,
corresponding to the feature size

Georges Quénot M2-GI-IDM 2023-2024 43

Convolutional layers
• Convolutional layer: multiple maps (planes) both in input

and output (3D to 3D, plus bias):
𝑂𝑂 𝑙𝑙, 𝑖𝑖, 𝑗𝑗 = 𝐵𝐵 𝑙𝑙 + �

𝑘𝑘,𝑚𝑚,𝑛𝑛

𝐾𝐾 𝑘𝑘, 𝑙𝑙,𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑘𝑘, 𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• Operation relative to (𝑚𝑚,𝑛𝑛) : convolution

• Operation relative to (𝑘𝑘, 𝑙𝑙) : matrix multiplication plus bias
(equals affine transform)

• Combination of:
– Convolution within the image plane, image topology
– Classical all to all “perpendicularly” to the image plane, no topology

• If image size and filter size = 1: fully connected “all to all”

Georges Quénot M2-GI-IDM 2023-2024 44

Convolutional layers (3D to 3D)

2(input)×3×3×3(output) convolution, no stride, no padding
Illustration from https://arxiv.org/abs/1603.07285

Georges Quénot M2-GI-IDM 2023-2024 45

Convolutional layers
• The convolution layer kernel is: (𝐷𝐷 + 2)-dimensional for 𝐷𝐷-

dimensional input data, e.g. 𝐷𝐷 = 2 for still images, 𝐷𝐷 = 3 for
video segments or scanner images.

• For color images, the RGB (or YUV or HSV …) planes
directly enter the first layer as a 3D volume of size
width × height × 3

• There is one unit (neuron) per “pixel” in the output
𝐷𝐷-dimensional topology and per output feature map

• Unit set: set of units associated to a 𝐷𝐷-dimensional grid
location, one unit per output feature map, one set per grid
location

• There is a single translation-invariant (𝐷𝐷 + 2)-dimensional
kernel per layer for mapping input pixel vectors to output
pixel vectors at all 𝐷𝐷-dimensional grid locations

Georges Quénot M2-GI-IDM 2023-2024 46

Resolution changes and side effects

• Side (border) effect:
– crop the output “image” relative to the input one and/or
– pad the image if the filter expand outside

• Resolution change (generally reduction):
– Stride: subsample, e.g. compute only one out of N, and/or
– Pool: compute all and apply an associative operator to compute

a single value for the low resolution location from the high
resolution ones, e.g.:

• Common pooling operators: maximum or average

• Pooling correspond to a separate back-propagation
module (as for the linear and non-linear parts of a layer)

𝑂𝑂(𝑘𝑘, 𝑖𝑖, 𝑗𝑗) = op(𝐼𝐼(𝑘𝑘, 2𝑖𝑖, 2𝑗𝑗), 𝐼𝐼(𝑘𝑘, 2𝑖𝑖 + 1,2𝑗𝑗), 𝐼𝐼(𝑘𝑘, 2𝑖𝑖, 2𝑗𝑗 + 1), 𝐼𝐼(𝑘𝑘, 2𝑖𝑖 + 1,2𝑗𝑗 + 1))

Georges Quénot M2-GI-IDM 2023-2024 47

Pytorch tutorial network (LeNet)

(Grayscale image)

Georges Quénot M2-GI-IDM 2023-2024 48

Pytorch tutorial network

Georges Quénot M2-GI-IDM 2023-2024 49

Pytorch tutorial network (color image)

Georges Quénot M2-GI-IDM 2023-2024 50

Learning Algorithm

• Training set: 𝑆𝑆 = 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖 1≤𝑖𝑖≤𝐼𝐼 input-output samples

• 𝑋𝑋𝑖𝑖,0 = 𝐼𝐼𝑖𝑖 and 𝑋𝑋𝑖𝑖,𝑛𝑛+1 = 𝐹𝐹𝑛𝑛+1 𝑊𝑊𝑛𝑛+1,𝑋𝑋𝑖𝑖,𝑛𝑛

• Note: regarding this notation the vector-matrix
multiplication counts as one layer and the element-wise
non-linearity counts as another one (not mandatory but
greatly simplifies the layer modules’ implementation)

• Error (empirical risk) on the training set:
𝐸𝐸𝑆𝑆 𝑊𝑊 = ∑𝑖𝑖 𝐹𝐹 𝑊𝑊, 𝐼𝐼𝑖𝑖 − 𝑂𝑂𝑖𝑖 2 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖,𝑁𝑁 − 𝑂𝑂𝑖𝑖

2

• Minimization on 𝑊𝑊 of 𝐸𝐸𝑆𝑆 𝑊𝑊 by gradient descent

Georges Quénot M2-GI-IDM 2023-2024 51

Gradient descent

Georges Quénot M2-GI-IDM 2023-2024 52

Error back-propagation
• Minimization of 𝐸𝐸𝑆𝑆 𝑊𝑊 by gradient descent:

– The gradient indicate an ascending direction: move in the opposite

– Randomly initialize 𝑊𝑊 0

– Iterate 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑊𝑊 𝑡𝑡 η = 𝑓𝑓 𝑡𝑡 or 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 𝑊𝑊 𝑡𝑡

−1

– 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2

… 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁

(𝑊𝑊 = 𝑊𝑊1,𝑊𝑊2 … 𝑊𝑊𝑁𝑁)

– Back-propagation:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑛𝑛

is computed by backward recurrence from

𝜕𝜕𝐹𝐹𝑛𝑛
𝜕𝜕𝜕𝜕𝑛𝑛

and
𝜕𝜕𝐹𝐹𝑛𝑛

𝜕𝜕𝑋𝑋𝑛𝑛−1
applying iteratively 𝑔𝑔 𝑜𝑜 𝑓𝑓 ′ = 𝑔𝑔′𝑜𝑜 𝑓𝑓 .𝑓𝑓𝑓

– Two derivatives, relative to weight and to data to be considered

Georges Quénot M2-GI-IDM 2023-2024 53

Stochastic gradient descent
and batch processing

• 𝐸𝐸𝑆𝑆 𝑊𝑊 = ∑𝑖𝑖 𝐹𝐹 𝑊𝑊, 𝐼𝐼𝑖𝑖 − 𝑂𝑂𝑖𝑖 2 = ∑𝑖𝑖 𝐸𝐸𝑖𝑖 𝑊𝑊

• 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝑡𝑡 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡 = 𝑊𝑊 𝑡𝑡 − ∑𝑖𝑖 η 𝑡𝑡 𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

𝑡𝑡

• Global update (epoch): sum of per sample updates

• Classical GD: update 𝑊𝑊 globally after all 𝐼𝐼 samples have
been processed (1 ≤ 𝑖𝑖 ≤ 𝐼𝐼)

• Stochastic GD: update 𝑊𝑊 after each processed sample
→ immediate effect, faster convergence

• Batch: update 𝑊𝑊 after a given number (typically between
32 and 256) of processed samples → parallelism

Georges Quénot M2-GI-IDM 2023-2024 54

Learning rate evolution

• 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝑡𝑡 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑊𝑊 𝑡𝑡

• Large learning rate: instability

• Small learning rate: slow convergence

• Variable learning rate: learning rate decay policy

• Most often: step strategy: iterate “constant during a
number of epochs, then divide by a given factor”

• Possibly different learning rates for different layers or for
different types of parameters, generally with common
evolution

Georges Quénot M2-GI-IDM 2023-2024 55

Error back-propagation (adapted from Yann LeCun)

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Ac

cu
m

ul
at

e
an

d
up

da
te

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with
respect to 𝑋𝑋𝑛𝑛. For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
Then backward recurrence:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑋𝑋𝑛𝑛−1

Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

η

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-GI-IDM 2023-2024 56

Error back-propagation 0: Prediction mode

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

Pa
ra

m
et

er
 s

to
ra

ge
Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝑋𝑋1

𝑂𝑂 = 𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass

Georges Quénot M2-GI-IDM 2023-2024 57

Error back-propagation 1: loss function

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶(𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

O

𝐸𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

Loss function (for one sample):
𝐸𝐸 = 𝐶𝐶 𝑋𝑋𝑁𝑁 ,𝑂𝑂
𝐸𝐸 𝑊𝑊, 𝐼𝐼,𝑂𝑂 = 𝐶𝐶 𝐹𝐹 𝑊𝑊, 𝐼𝐼 ,𝑂𝑂

Sum over the whole training
set or over a batch of samples:

𝐸𝐸 𝑊𝑊 = �
𝑖𝑖

𝐸𝐸 𝑊𝑊, 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖

Same 𝑊𝑊, different 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖

Update:

𝑊𝑊 = 𝑊𝑊 − 𝜂𝜂
𝜕𝜕𝐸𝐸 𝑊𝑊
𝜕𝜕𝑊𝑊

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass

Georges Quénot M2-GI-IDM 2023-2024 58

Error back-propagation 2: Data backward pass

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶(𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

O

𝐸𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶(𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with
respect to 𝑋𝑋𝑛𝑛. For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
Then backward recurrence:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑋𝑋𝑛𝑛−1

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
Data backward pass

Georges Quénot M2-GI-IDM 2023-2024 59

Error back-propagation 3: Parameter backward pass

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with
respect to 𝑋𝑋𝑛𝑛. For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
Then backward recurrence:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑋𝑋𝑛𝑛−1

Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-GI-IDM 2023-2024 60

Error back-propagation 4: Accumulate and update

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Ac

cu
m

ul
at

e
an

d
up

da
te

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)
…
Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝐹𝐹𝑛𝑛 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1
𝜕𝜕𝑊𝑊𝑛𝑛

Accumulate gradients and
update parameters.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:

𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛 − 𝜂𝜂�
𝑖𝑖

𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

𝑊𝑊, 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖

Usually on batches

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

η

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-GI-IDM 2023-2024 61

Error back-propagation: simplified notations

𝐹𝐹1 (𝑊𝑊1 ,𝑋𝑋0)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝐹𝐹𝑁𝑁 (𝑊𝑊𝑁𝑁 ,𝑋𝑋𝑁𝑁−1)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

𝑋𝑋𝑁𝑁−1

𝑊𝑊𝑁𝑁

𝐼𝐼 = 𝑋𝑋0

𝑊𝑊1

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁−1

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂𝐸𝐸/ ∂𝑋𝑋1

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑊𝑊𝑁𝑁

∂𝐸𝐸/ ∂𝑊𝑊1

O

𝐸𝐸
Ac

cu
m

ul
at

e
an

d
up

da
te

Forward pass, for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)
𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

We need gradients with
respect to 𝑋𝑋𝑛𝑛. For 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐶𝐶
𝜕𝜕𝑋𝑋𝑁𝑁

Then backward recurrence:
𝜕𝜕𝐸𝐸

𝜕𝜕𝑋𝑋𝑛𝑛−1
=

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝑋𝑋𝑛𝑛
𝜕𝜕𝑋𝑋𝑛𝑛−1

Gradients with respect to 𝑊𝑊𝑛𝑛.
For 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁:
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

𝜕𝜕𝑋𝑋𝑛𝑛
𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋1

𝑋𝑋𝑁𝑁

𝑋𝑋𝑛𝑛

Forward pass
Data backward pass

Param backward pass

η

Georges Quénot M2-GI-IDM 2023-2024 62

Layer module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝑊𝑊

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝑊𝑊

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝐹𝐹(𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛)𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑊𝑊

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛× ×

Notes: 𝑋𝑋𝑖𝑖𝑛𝑛 ≡ 𝑋𝑋𝑛𝑛−1 , 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 ≡ 𝑋𝑋𝑛𝑛 , 𝑊𝑊 ≡ 𝑊𝑊𝑛𝑛 and 𝐹𝐹 ≡ 𝐹𝐹𝑛𝑛 for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁

Georges Quénot M2-GI-IDM 2023-2024 63

Layer module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝑊𝑊

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝑊𝑊

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝐹𝐹(𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛)
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛× ×

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

≡
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑊𝑊 ≡

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

Georges Quénot M2-GI-IDM 2023-2024 64

Layer module (adapted from Yann LeCun)

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

≡
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝑊𝑊 ≡

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑊𝑊

Gradient back-propagation rule:

The gradient relative to the input (either 𝑊𝑊 or 𝑋𝑋𝑖𝑖𝑛𝑛) is
equal to the gradient relative to the output (𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡)
times the Jacobian of the transfer function
(respectively 𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
or 𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛
, left vector multiplication)

Georges Quénot M2-GI-IDM 2023-2024 65

Autograd variable (PyTorch)

data : 𝑋𝑋 (may be 𝑋𝑋𝑖𝑖𝑛𝑛, 𝑊𝑊 or 𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡)

grad : 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋

𝐸𝐸 : where backward() was called from
grad_fn : 𝐹𝐹 | 𝑋𝑋 = 𝐹𝐹(…) : "None" for 𝑊𝑊 or for inputs

Georges Quénot M2-GI-IDM 2023-2024 66

Autograd Variable and function

Input may be multiple (𝑋𝑋𝑖𝑖𝑛𝑛,𝑊𝑊)
Autograd does not care about input types

Georges Quénot M2-GI-IDM 2023-2024 67

Autograd variable (PyTorch)

𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1)

𝑋𝑋𝑛𝑛−1

𝑊𝑊𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

∂E/ ∂Xn

∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

𝑋𝑋𝑛𝑛

𝑁𝑁𝑜𝑜𝑙𝑙𝑙𝑙

𝑊𝑊𝑛𝑛 ∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛

∂E/ ∂Xn𝑋𝑋𝑛𝑛

𝐹𝐹𝑛𝑛

𝑋𝑋𝑛𝑛−1 ∂𝐸𝐸/ ∂𝑋𝑋𝑛𝑛−1

𝐹𝐹𝑛𝑛−1

𝐹𝐹𝑛𝑛

𝑊𝑊𝑛𝑛 is an input,
not produced by
any function:
grad_fn = Null

𝑋𝑋0 is an input,
not produced by
any function:
grad_fn = Null for 𝑋𝑋0

contains both
the data forward function

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛−1

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

⋅
𝜕𝜕𝐹𝐹 𝑊𝑊,𝑋𝑋𝑛𝑛−1

𝜕𝜕𝑋𝑋𝑛𝑛−1
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑛𝑛

⋅
𝜕𝜕𝐹𝐹 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1

𝜕𝜕𝑊𝑊𝑛𝑛

𝑋𝑋𝑛𝑛 = 𝐹𝐹 𝑊𝑊𝑛𝑛,𝑋𝑋𝑛𝑛−1

and the gradient backward
function(s)

Georges Quénot M2-GI-IDM 2023-2024 68

Autograd variable (PyTorch)

𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)

𝑋𝑋𝑁𝑁

𝑂𝑂

∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

∂E/ ∂E

∂𝐸𝐸/ ∂𝑂𝑂

𝐸𝐸

𝑁𝑁𝑜𝑜𝑙𝑙𝑙𝑙

𝑂𝑂 ∂𝐸𝐸/ ∂𝑂𝑂

∂E/ ∂E𝐸𝐸

𝐶𝐶

𝑋𝑋𝑁𝑁 ∂𝐸𝐸/ ∂𝑋𝑋𝑁𝑁

𝐹𝐹𝑁𝑁

𝐶𝐶

𝑂𝑂 is an input,
not produced by
any function:
grad_fn = Null

contains both
the data forward function

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑁𝑁

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝐸𝐸

⋅
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑋𝑋𝑁𝑁
𝜕𝜕𝐸𝐸
𝜕𝜕𝑂𝑂

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝐸𝐸

⋅
𝜕𝜕𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂

𝜕𝜕𝑂𝑂

𝐸𝐸 = 𝐶𝐶 𝑋𝑋𝑁𝑁,𝑂𝑂
and the gradient backward
function(s)

Georges Quénot M2-GI-IDM 2023-2024 69

Autograd backward()

Define 𝑋𝑋𝑛𝑛 = 𝐹𝐹𝑛𝑛 (𝑊𝑊𝑛𝑛 ,𝑋𝑋𝑛𝑛−1) for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁 (or arbitrary network)
End with 𝐸𝐸 = 𝐶𝐶 (𝑋𝑋𝑁𝑁 ,𝑂𝑂)
Execute a forward pass for a training sample (𝐼𝐼,𝑂𝑂)
Call E.backward() (backward pass from 𝐸𝐸 with ∂𝐸𝐸/∂𝐸𝐸=1)
Get all ∂𝐸𝐸/ ∂𝑊𝑊𝑛𝑛 (and ∂E/ ∂Xn) for that training sample

Georges Quénot M2-GI-IDM 2023-2024 70

Linear module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝑊𝑊

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝑊𝑊

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑊𝑊𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊

= 𝑋𝑋𝑖𝑖𝑛𝑛
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

𝑊𝑊

Note: 𝑋𝑋𝑖𝑖𝑛𝑛 and 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 are regular (column) vectors and 𝑊𝑊 is a matrix while ∂E/ ∂Xin
and ∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡 are transpose (row) vectors, this is because d𝐸𝐸 = (∂𝐸𝐸/ ∂𝑋𝑋).d𝑋𝑋 .
∂𝐸𝐸/ ∂𝑊𝑊 is a transposed matrix which is the outer product of the regular and
transpose vectors 𝑋𝑋𝑖𝑖𝑛𝑛 and ∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡 .

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-GI-IDM 2023-2024 71

Pointwise module (adapted from Yann LeCun)

𝑋𝑋𝑖𝑖𝑛𝑛

𝐵𝐵

∂𝐸𝐸/ ∂𝑋𝑋𝑖𝑖𝑛𝑛

∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

∂𝐸𝐸/ ∂𝐵𝐵

𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵)𝜕𝜕𝐸𝐸
𝜕𝜕𝐵𝐵

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

o 𝑓𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵) 𝑇𝑇 𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑖𝑖𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

o 𝑓𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵) 𝑇𝑇

Notes: 𝐵𝐵 is a bias vector on the input. 𝑋𝑋𝑖𝑖𝑛𝑛, 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 and 𝐵𝐵 are regular (column) vectors
all of the same size while ∂E/ ∂Xin and ∂𝐸𝐸/ ∂𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡 and ∂𝐸𝐸/ ∂𝐵𝐵 are transpose vectors
also of the same size. 𝑓𝑓 is a scalar function applied pointwise on 𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵. 𝑓𝑓𝑓 is the
derivative of 𝑓𝑓 and is also applied pointwise. The multiplication by 𝑓𝑓𝑓(𝑋𝑋𝑖𝑖𝑛𝑛 + 𝐵𝐵) 𝑇𝑇

is also performed pointwise (Hadamard product denoted “o” here).

Georges Quénot M2-GI-IDM 2023-2024 72

Non-linear functions

• Sigmoid: 𝑧𝑧 = 1
1+𝑒𝑒𝑦𝑦

• Hyperbolic tangent: 𝑧𝑧 = tanh𝑦𝑦

• Rectified Linear Unit (ReLU): 𝑧𝑧 = max(0,𝑦𝑦)

• Programmable ReLU (PReLU) : 𝑧𝑧 = max(α𝑦𝑦,𝑦𝑦)
with α learned (i.e. α ⊂𝑊𝑊)

• …

• Appropriate non-linear functions lead to better
performance and/or faster convergence

• Avoid vanishing / exploding gradients

Georges Quénot M2-GI-IDM 2023-2024 73

Neural Networks in practice

• Good news is that autograd automatically and
transparently takes care of gradients computation and
propagation; you just have to call .backward()

• You only have to define the forward network sequence

• You still have to select various hyper-parameters and to
organize:

– iterations
– batch processing
– learning rate schedule
– possibly data augmentation

Georges Quénot M2-GI-IDM 2023-2024 74

Momentum

• Optimization and regularization technique
• One-level update rule:

– Gradient modifies position: 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡

• Two-level update rule:
– Gradient modifies velocity: 𝑉𝑉 𝑡𝑡 + 1 = β𝑉𝑉 𝑡𝑡 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑡𝑡

– Velocity modifies position: 𝑊𝑊 𝑡𝑡 + 1 = 𝑊𝑊 𝑡𝑡 − η𝑉𝑉 𝑡𝑡

– β is chosen slightly smaller than 1: small corrections

• Implement “inertia”: more stable trajectories
• Allows crossing of saddle points
• Faster training, better performance

Georges Quénot M2-GI-IDM 2023-2024 75

Weight decay

• Regularization technique

• Add a penalty term to the Empirical Risk function

• 𝐸𝐸 𝑊𝑊 → 𝐸𝐸 𝑊𝑊 + λ
2
𝑊𝑊2

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡 → 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡 + λ𝑊𝑊 𝑡𝑡

• λ chosen as a small value, typical 10−4

• Avoid divergence of parameter values

Georges Quénot M2-GI-IDM 2023-2024 76

Dropout
• Regularization technique
• During training, at each epoch, neutralize a given

(typically 0.2 to 0.5) proportion p of randomly selected
connections

• Compensation with a multiplicative 1/(1−p) factor for the
remaining connections

• All connections active during evaluation
• Avoid concentration of activations on particular

connections
• More robust operation, faster training, better performance
• Counts as a function (forward and backward parts)
• Different modes for training and evaluation

Georges Quénot M2-GI-IDM 2023-2024 77

Batch Normalization

• Stabilization technique

• Necessary for training very deep networks

• Maintain the dynamic range of the incoming data in a
stable region, preventing it from diverging across
numerous layers

• γ and β are learnable parameters

• ε is for avoiding division by 0 for constant data

Georges Quénot M2-GI-IDM 2023-2024 78

Batch Normalization

• No need for bias in the preceding layer (ignored)

• Running estimates during training used during evaluation

• Counts as a function (forward and backward parts)

• Different modes for training and evaluation

• Faster training, better performance

Georges Quénot M2-GI-IDM 2023-2024 79

Softmax

• Normalization of output as probabilities
(positive values summing to 1) for the multi-
class problem (i.e. target categories are
mutually exclusive)

• 𝑧𝑧𝑖𝑖 = 𝑒𝑒𝑦𝑦𝑖𝑖
∑𝑗𝑗 𝑒𝑒

𝑦𝑦𝑗𝑗

• Not suited for the multi-label case (i.e. target
categories are not mutually exclusive)

• Associated loss function is cross-entropy

Georges Quénot M2-GI-IDM 2023-2024 80

Cross-entropy loss (multi-class)
• 𝑝𝑝𝑖𝑖 : probability vector for class 𝑖𝑖
• 𝑙𝑙𝑖𝑖 : truth value for class 𝑖𝑖 (“one hot encoding”)
• 𝐿𝐿 = ∑𝑖𝑖 − 𝑙𝑙𝑖𝑖 log 𝑝𝑝𝑖𝑖
• For exclusive classes, 𝑙𝑙𝑖𝑖 is equal to 1 only for the right

class 𝑖𝑖0 and to 0 otherwise:
• 𝐿𝐿 = − log 𝑝𝑝𝑖𝑖0 (log 1 = 0 and log 0 = −∞)
• Forces 𝑝𝑝𝑖𝑖0 to be close to 1, very high loss value if 𝑝𝑝𝑖𝑖0 is

close to 0 → faster convergence
• Other 𝑝𝑝𝑖𝑖 indirectly forced to be close to 0 because the
𝑝𝑝𝑖𝑖s sums to 1

• With softmax: forces 𝑦𝑦𝑖𝑖0 to be greater than the other 𝑦𝑦𝑖𝑖s

Georges Quénot M2-GI-IDM 2023-2024 81

Cross-entropy loss (multi-label)
• Non-exclusive categories are called labels and are

seen as independent, each with two-classes
• 𝑝𝑝𝑖𝑖 : probability vector for label 𝑖𝑖
• 𝑙𝑙𝑖𝑖 : truth value for label 𝑖𝑖 (either 0 or 1)

• Sigmoid “normalization”: 𝑝𝑝𝑖𝑖 = 1
1+𝑒𝑒−𝑦𝑦𝑖𝑖

and 1 − 𝑝𝑝𝑖𝑖 = 1
1+𝑒𝑒𝑦𝑦𝑖𝑖

• 𝐿𝐿 = ∑𝑖𝑖 − 𝑙𝑙𝑖𝑖 log 𝑝𝑝𝑖𝑖 + (1 − 𝑙𝑙𝑖𝑖)log(1 − 𝑝𝑝𝑖𝑖)
• Same formula as for multi-class with a two-class

problem for each label
• Sum of CE Losses per label
• Note: works also if 𝑙𝑙𝑖𝑖 has non-binary values

(probabilities of the true distribution)

Georges Quénot M2-GI-IDM 2023-2024 82

AlexNet (ImageNet Challenge 2012)
[Krizhevsky et al., 2012]
• 7 hidden layers, 650K units, 60M parameters (W)
• GPU implementation (50× speed-up over CPU)
• Trained on two GTX580-3GB GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012

Georges Quénot M2-GI-IDM 2023-2024 83

AlexNet “conv5” example

• Number of units (“neurons”) in a layer (= size of the output tensor):
output image width (13) × output image height (13) × number of
output planes (256) = 43,264

• Number of weights in a layer (= number of weights in a layer):
number of input planes (384) × number of output planes (256) ×
filter width (3) × filter height (3) = 884,736 (884,992 including biases)

• Number of connections: number of grid locations × number of
weights in a unit set (excluding biases) = 149,520,384

Georges Quénot M2-GI-IDM 2023-2024 84

Yann LeCun recommendations
• Use ReLU non-linearities (tanh and logistic are falling out of favor)
• Use cross-entropy loss for classification
• Use Stochastic Gradient Descent on minibatches
• Shuffle the training samples
• Normalize the input variables (zero mean, unit variance)
• Schedule to decrease the learning rate
• Use a bit of L1 or L2 regularization on the weights (or a combination)

– But it's best to turn it on after a couple of epochs
• Use “dropout” for regularization

– Hinton et al 2012 http://arxiv.org/abs/1207.0580
• Lots more in [LeCun et al. “Efficient Backprop” 1998]
• Lots, lots more in “Neural Networks, Tricks of the Trade” (2012

edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

http://arxiv.org/abs/1207.0580

Georges Quénot M2-GI-IDM 2023-2024 85

Recent trends

• VGG and GoogLeNet (16-19 and 22 layers)
• Residual networks (152 layers with “shortcuts”)
• Stochastic depth networks (up to 1202 layers)
• Dense Networks
• Weakly supervised / unsupervised learning
• Generative adversarial networks
• Segmentation networks
• Multimodal embeddings

Georges Quénot M2-GI-IDM 2023-2024 86

GoogLeNet (very deep)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

9 “inception” modules

Georges Quénot M2-GI-IDM 2023-2024 87

GoogLeNet (very deep)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

Reminder: 1x1 convolutions actually implements an all-to-all between
the input and output maps (pixel-wise all-to-all)

Georges Quénot M2-GI-IDM 2023-2024 88

VGG Network (very deep)

Simonyan and Zisserman, Andrew: Very Deep Convolutional Networks
for Large-Scale Image Recognition, CVPR 2014.

All 3x3 convolutions

Georges Quénot M2-GI-IDM 2023-2024 89

Residual networks (ultra deep)

He, Zhang, Ren and Sun: Deep Residual Learning for Image
Recognition, CVPR 2015

Ultra deep network with “shortcuts”

Georges Quénot M2-GI-IDM 2023-2024 90

Stochastic depth networks (extremely deep)

Huang et al.: Deep Networks with Stochastic Depth, CVPR 2016

ResNet with stochastic depth
“Dropout at the layer level”

Georges Quénot M2-GI-IDM 2023-2024 91

Dense networks

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

All layers connected to all layers
(in the forward direction only and
without resolution change

Georges Quénot M2-GI-IDM 2023-2024 92

Dense networks

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

A deep DenseNet with three dense blocks
The layers between blocks are transition layers that change the
resolution via convolution and pooling

Georges Quénot M2-GI-IDM 2023-2024 93

Weakly / unsupervised learning
• Gather millions (from 1 to 100) of images from the web
• Two main strategies:

– Query an image search engine (e.g. Google) with either target
tags or descriptions → we can choose the categories

– Download images with associated descriptions from a social
network (e.g. Flickr) and extract/select tags from the description
→ we have to do with the available categories

• Filter the results (may use cross-validation predictions)
• Train from noisy data and compensate the loss due to

noise with a gain from quantity
• Work on the quality of the category-image association
• Use classifiers or features for transfer learning

Georges Quénot M2-GI-IDM 2023-2024 94

Weakly / unsupervised learning
• Webly Supervised Learning of Convolutional Networks

Xinlei Chen and Abhinav Gupta
arXiv:1505.01554, May 2015

• Effective training of convolutional networks using noisy Web images
Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu
CBMI, June 2015

• Learning from Massive Noisy Labeled Data for Image Classification
Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang
CVPR, June 2015

• Harnessing Noisy Web Images for Deep Representation
Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu
arXiv:1512.04785, July 2016

• Learning Visual Features from Large Weakly Supervised Data
Armand Joulin, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache
ECCV, Sep. 2016

Georges Quénot M2-GI-IDM 2023-2024 95

Engineered versus learned descriptors
• Classical “classification pipeline”

– Extraction(s) – [aggregation] – optimization(s) –
classifier(s) – one or more levels of fusion – re-scoring
(non exhaustive example)

– Most of the stages are explicitly engineered: the form
of descriptors or processing steps has been thought
and designed by a skilled engineer or researcher

– Lots of experience and acquired expertise by
thousands of smart people over tens of years

– Learning concerns only the classifier(s) stages and a
few hyper-parameters controlling the other ones

– Almost everything has been tried
– The more you incorporate, the more you get (at a cost)

Georges Quénot M2-GI-IDM 2023-2024 96

Engineered versus learned descriptors
• Deep learning pipeline: MLP with about 8 layers

– Advances in computing power (Tflops): large networks possible
– Algorithmic advance: combination of convolutional layers for the

lower stages with all-to-all layers; the topology of the image is
preserved in the lower layers with weights shared between the
units within a layer

– Algorithmic advances: NN researchers finally find out how to have
back-propagation working for MLP with more than three layers

– Image pixels are entered directly into the first layer
– The first (resp. intermediate, last) layers practically compute low-

level (resp. intermediate level, semantic) descriptors
– Everything is made using a unique and homogeneous architecture
– A single network can be used for detecting many target concepts
– All the level are jointly optimized at once
– Requires huge amounts of training data

Georges Quénot M2-GI-IDM 2023-2024 97

Transfer Learning
• Train a multi-class classifier on large annotated

data collection, e.g. ImageNet
• Extract hidden layers (or final) layers, typically

close to the end as they contain very general and
highly semantic information, e.g. FC6 (4096), FC7
(4096) and/or FC8 (1000) in an AlexNet

• Use them as descriptors for completely different
tasks, either in classification or in retrieval

• PCA-based dimensionality reduction works very
well, producing both very compact (few hundreds
components “only”) and very effective descriptors

Georges Quénot M2-GI-IDM 2023-2024 98

Deep Learning and IAR
• Indexing for key-word-based search

– Get an estimate of presence probability for an as large as
possible set of concepts / categories

– Map any query to a subset of them
– Score the multimedia samples according to the presence

probabilities of the selected ones

• Query by example or instance search
– Use last layers values (output or last but one or last but two)

as semantic feature vectors (descriptors) for the query and
the candidate

– Classical QBE with Euclidean distance or scalar product
– Possibility to do even better by “metric learning”

Georges Quénot M2-GI-IDM 2023-2024 99

Metric learning with Siamese Networks
• Two-branch Siamese network: find representations that

produces small distances between “similar” element
and large distances between “dissimilar” elements:
enter matching or non-matching pairs

• Three-branch Siamese network: find representations
that produces smaller distances between “similar”
element than between “dissimilar” elements: enter
(query, positive, negative) triplets

• Triplet loss (Gordo et al. 2016):
𝐿𝐿 𝐼𝐼𝑞𝑞 , 𝐼𝐼+, 𝐼𝐼− =

1
2

max 0,𝑚𝑚 + 𝑞𝑞 − 𝑑𝑑+ 2 − 𝑞𝑞 − 𝑑𝑑− 2

• The choice of the 𝐼𝐼𝑞𝑞, 𝐼𝐼+ and 𝐼𝐼− samples is important:
use neither too easy nor too difficult ones

Georges Quénot M2-GI-IDM 2023-2024 100

Metric learning with Siamese Networks

• Shared weights between branches learned or fine-tuned
using triplets

• A single branch (without loss) extracts representations
• Region of interest (ROI) pooling is also used (implicit

learning of where the targets of interest might be)

Georges Quénot M2-GI-IDM 2023-2024 101

Feed-forward network on a sequence

ℎ𝑜𝑜 = 𝜎𝜎 𝑊𝑊ℎ𝑥𝑥𝑜𝑜 + 𝑏𝑏ℎ
𝑦𝑦𝑜𝑜 = 𝜎𝜎 𝑊𝑊𝑦𝑦ℎ𝑜𝑜 + 𝑏𝑏𝑦𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

𝑊𝑊ℎ 𝑊𝑊ℎ 𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦

Independent predictions: no history
Training on samples
Only two linear layers here: not deep (usually more)

Georges Quénot M2-GI-IDM 2023-2024 102

Simple recurrent network (Elman)

ℎ𝑜𝑜 = 𝜎𝜎 𝑊𝑊ℎ𝑥𝑥𝑜𝑜 + 𝑈𝑈ℎℎ𝑜𝑜−1 + 𝑏𝑏ℎ
𝑦𝑦𝑜𝑜 = 𝜎𝜎 𝑊𝑊𝑦𝑦ℎ𝑜𝑜 + 𝑏𝑏𝑦𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

h0

𝑊𝑊ℎ 𝑊𝑊ℎ 𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦

𝑈𝑈ℎ 𝑈𝑈ℎ 𝑈𝑈ℎ

Sequence (past) history is represented in the hidden states
Training on sequences (unfolded loop)
Back-propagation through many hidden states: deep

Georges Quénot M2-GI-IDM 2023-2024 103

Simple recurrent network (Jordan)

ℎ𝑜𝑜 = 𝜎𝜎 𝑊𝑊ℎ𝑥𝑥𝑜𝑜 + 𝑈𝑈ℎ𝑦𝑦𝑜𝑜−1 + 𝑏𝑏ℎ
𝑦𝑦𝑜𝑜 = 𝜎𝜎 𝑊𝑊𝑦𝑦ℎ𝑜𝑜 + 𝑏𝑏𝑦𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

𝑊𝑊ℎ 𝑊𝑊ℎ 𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦 𝑊𝑊𝑦𝑦

𝑈𝑈ℎ 𝑈𝑈ℎ 𝑈𝑈ℎ

Sequence (past) history is represented in the hidden states
Training on sequences (unfolded loop)
Back-propagation through many hidden states: deep

y0

Georges Quénot M2-GI-IDM 2023-2024 104

Folded (usual) representations

xt

ht

yt

𝑊𝑊ℎ

𝑊𝑊𝑦𝑦

𝑈𝑈ℎ

Elman Jordan

xt

ht

yt

𝑊𝑊ℎ

𝑊𝑊𝑦𝑦 𝑈𝑈ℎ

Georges Quénot M2-GI-IDM 2023-2024 105

Recurrent neural networks
• Perform sequence-to-sequence transformations
• Learns patterns in sequences
• Used in speech and in natural language processing
• Used in video processing (action recognition)
• Simple RNNs have limitations (unstable gradients)
• Variants with “memory cells”:

– Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
– Gated Recurrent Units (Cho et al., 2014) (simplified LSTM)
– Avoid exploding or vanishing gradients on long sequences
– Can “count”

Georges Quénot M2-GI-IDM 2023-2024 106

Word embeddings
• Map words in a D-dimensional space with semantic

distances and relations roughly preserved

From
Mikolov, 2013
(Word2Vec)

Georges Quénot M2-GI-IDM 2023-2024 107

Word2Vec (Mikolov et al., 2013)
• Words are represented by “1-hot encoding”
• Encoder-decoder architectures

– Encoder: V dims to D dims linear map(s)
– Decoder: D dims to V dims linear map(s)
– V: vocabulary size, D: embedding size

• Two variants:
– CBOW: predict single words from their neighbors
– Skip-gram: predict neighbors from single words (better)

• The intermediate representation is the embedding
• Unsupervised learning: from huge amounts of raw data
• Learning by gradient descent

Georges Quénot M2-GI-IDM 2023-2024 108

Word2Vec skip grams

1 encoding matrix
4 decoding matrices

All source and
target vectors are
1-hot encoded

	Diapositive numéro 1
	Outline
	Diapositive numéro 3
	ImageNet Classification 2012 Results
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
	ImageNet Classification 2013 Results
	Going deeper and deeper
	Deep Convolutional Neural Networks
	Deep Learning is (now) EASY
	Supervised learning
	Learning a target function
	Learning a target function
	Learning a target function
	Learning from training data
	Supervised learning
	Two types of functions
	Parametric supervised learning
	Single-label loss function
	Multi-label loss function
	Formal neural or unit (two sub-units)
	Formal neural or unit (two sub-units)
	Neural layer (all to all, two sub-layers)
	Multilayer perceptron (all to all)
	Multilayer perceptron (all to all)
	Composition of simple functions
	Composition of simple functions
	Composition of simple functions
	Feed Forward Network
	Classical Image classification
	Classical Image classification
	Deep “end-to-end” Image classification
	Convolutional layers (2D grid case)
	3D tensor data (2D grid case)
	Convolutional layers (2D grid case)
	Convolutional layers (2D grid case)
	Classical image convolution (2D to 2D)
	Classical image convolution (2D to 2D)
	Classical image convolution (2D to 2D)
	Classical image convolution (2D to 2D)
	Set of image convolutions (2D to 3D)
	Example Gabor Filter Kernels
	Convolutional layers
	Convolutional layers
	Convolutional layers (3D to 3D)
	Convolutional layers
	Resolution changes and side effects
	Pytorch tutorial network (LeNet)
	Pytorch tutorial network
	Pytorch tutorial network (color image)
	Learning Algorithm
	Gradient descent
	Error back-propagation
	Stochastic gradient descent�and batch processing
	Learning rate evolution
	Error back-propagation (adapted from Yann LeCun)
	Error back-propagation 0: Prediction mode
	Error back-propagation 1: loss function
	Error back-propagation 2: Data backward pass
	Error back-propagation 3: Parameter backward pass
	Error back-propagation 4: Accumulate and update
	Error back-propagation: simplified notations
	Layer module (adapted from Yann LeCun)
	Layer module (adapted from Yann LeCun)
	Layer module (adapted from Yann LeCun)
	Autograd variable (PyTorch)
	Autograd Variable and function
	Autograd variable (PyTorch)
	Autograd variable (PyTorch)
	Autograd backward()
	Linear module (adapted from Yann LeCun)
	Pointwise module (adapted from Yann LeCun)
	Non-linear functions
	Neural Networks in practice
	Momentum
	Weight decay
	Dropout
	Batch Normalization
	Batch Normalization
	Softmax
	Cross-entropy loss (multi-class)
	Cross-entropy loss (multi-label)
	AlexNet (ImageNet Challenge 2012)
	AlexNet “conv5” example
	Yann LeCun recommendations
	Recent trends
	GoogLeNet (very deep)
	GoogLeNet (very deep)
	VGG Network (very deep)
	Residual networks (ultra deep)
	Stochastic depth networks (extremely deep)
	Dense networks
	Dense networks
	Weakly / unsupervised learning
	Weakly / unsupervised learning
	Engineered versus learned descriptors
	Engineered versus learned descriptors
	Transfer Learning
	Deep Learning and IAR
	Metric learning with Siamese Networks
	Metric learning with Siamese Networks
	Feed-forward network on a sequence
	Simple recurrent network (Elman)
	Simple recurrent network (Jordan)
	Folded (usual) representations
	Recurrent neural networks
	Word embeddings
	Word2Vec (Mikolov et al., 2013)
	Word2Vec skip grams

